鱼雷定深运动方程含有诸多的非线性项,用传统的分析方法对其稳定性进行研究有较大难度。运用非线性科学中的分叉理论,选定鱼雷定深运动方程中的某一流体动力系数扰动值为分叉参数,系统地分析在经典比例微分深度控制系统作用下,鱼雷在退化平衡点处的航行稳定性。利用中心流形定理,推导出系统状态变量解析表达式,对系统 Hopf 分叉进行分析,并进行仿真验证。结果表明,流体动力系数变化使定深航行产生 Hopf 分叉,并给出了确保鱼雷稳定航行的流体动力参数取值范围。
There are several nonlinear elements in the equations of torpedo depthkeeping movements. It is difficult to analyze its stability with traditional methods. A hydrodynamic parameter interference is chosen as bifurcation parameter at first. Then the sailing stability of torpedo with proportional-derivative controller is analyzed by bifurcation theory. The center manifold theory is used to get the expression of system state parameters. And the Hopf bifurcation of system is analyzed. The result is verified by numerical simulations. It shows that the hydrodynamic parameter's changing will bring Hopf bifurcation for depthkeeping sailing. And the range of hydrodynamic parameter value that insures torpedo sailing stability is given.
2016,38(7): 95-98 收稿日期:2016-04-22
DOI:10.3404/j.issn.1672-7619.2016.07.021
分类号:TP13
作者简介:马亮(1973-),女,教授,主要从事水中兵器使用以及发射理论与技术研究工作。
参考文献:
[1] 徐德民. 鱼雷自动控制系统[M]. 西安:西北工业大学出版社, 2001. XU De-min. Autocontrol system of torpedo[M]. Xi'an:Northwestern Polytechnical University Press, 2001.
[2] 黄景泉, 张宇文. 鱼雷流体力学[M]. 西安:西北工业大学出版社, 1989. HUANG Jing-quan, ZHANG Yu-wen. Torpedo hydrodynamics[M]. Xi'an:Northwestern Polytechnical University Press, 1989.
[3] CHEN G R, MOIOLA J L, WANG H O. Bifurcation control:theories, methods, and applications[J]. International Journal bifurcation and Chaos, 2000, 10(3):511-548.
[4] 朱新坚, 邵惠鹤, 张钟俊. 一类非线性系统Hopf分叉的控制[J]. 上海交通大学学报, 1997, 31(6):52-55. ZHU Xin-jian, SHAO Hui-he, ZHANG Zhong-jun. Control of Hopf bifurcation in a certain nonlinear system[J]. Journal of Shanghai Jiaotong University, 1997, 31(6):52-55.
[5] 杨明, 王德石, 蒋兴舟. 鱼雷纵向运动的分叉特性分析[J]. 兵工学报, 2001, 22(3):338-341. YANG Ming, WANG De-shi, JIANG Xing-zhou. Bifurcation analysis for the nonlinear longitudinal motion dynamics of a torpedo[J]. Acta Armamentarii, 2001, 22(3):338-341.
[6] 王晓玢, 孙尧, 莫宏伟. 潜艇垂直面运动突变分析[J]. 大连海事大学学报, 2008, 34(4):55-58. WANG Xiao-bin, SUN Yao, MO Hong-wei. Catastrophe analysis of submarine motion in dive plane[J]. Journal of Dalian Maritime University, 2008, 34(4):55-58.
[7] DING H, WANG D S. The sailing stability of autonomous underwater vehicle with pitch controller[C]//Proceedings of 2009 IEEE International Conference on Mechatronics and Automation. Changchun:IEEE, 2009:4790-4794.
[8] 白涛, 孙尧, 莫宏伟. 分叉分析在水下高速运动体稳定控制中的应用[J]. 哈尔滨工程大学学报, 2008, 29(10):1067-1075. BAI Tao, SUN Yao, MO Hong-wei. Application of bifurcation analysis to the stability control of underwater high-speed vehicles[J]. Journal of Harbin Engineering University, 2008, 29(10):1067-1075.
[9] 白涛, 孙尧, 莫宏伟. 水下高速运动体运动稳定性的分叉分析[J]. 哈尔滨工业大学学报, 2009, 41(5):95-98. BAI Tao, SUN Yao, MO Hong-wei. Bifurcation analysis of motion stability for high-speed underwater vehic[J]. Journal of Harbin Institute of Technology, 2009, 41(5):95-98.
[10] 杨明, 王德石, 蒋兴舟. 鱼雷大攻角运动的分叉分析[J]. 鱼雷技术, 2000, 8(2):4-7, 17. YANG Ming, WANG De-shi, JIANG Xing-zhou. Bifurcation analysis for pitch motion dynamics of a torpedo[J]. Torpedo Technology, 2000, 8(2):4-7, 17.
[11] 丁浩, 王德石. 水下航行体纵倾航行稳定性研究[J]. 力学季刊, 2009, 30(4):597-601. DING Hao, WANG De-shi. Study on pitch sailing stability of torpedo[J]. Chinese Quarterly of Mechanics, 2009, 30(4):597-601.
[12] 严卫生. 鱼雷航行力学[M]. 西安:西北工业大学出版社, 2005. YAN Wei-sheng. Torpedo sailing dynamics[M]. Xi'an:Northwestern Polytechnical University Press, 2005.
[13] 陆启韶. 分岔与奇异性[M]. 上海:上海科技教育出版社, 1995. LU Qi-shao. Bifurcation and singularity[M]. Shanghai:Shanghai Science and Technical Education Press, 1995.
[14] 陈予恕. 非线性振动系统的分叉和混沌理论[M]. 北京:高等教育出版社, 1993. CHEN Yu-shu. Bifurcation and chaos theory of nonlinear vibration systems[M]. Beijing:Higher Education Press, 1993.