海洋监测数据规模较大,当前平台处理数据能力较低,无法有效处理海量海洋监测数据,不能满足监控实时性的要求,为此,设计一种基于云存储的海量海洋监测数据平台,给出了平台的总体结构,主要包括海洋数据监测子系统和云存储子系统。针对海洋数据监测子系统,详细分析了数据采集卡、传感器、AD7606 芯片的设计过程,传感器将得到的海洋监测数据发送至数据采集卡中,采集卡将结果传输至 AD7076 芯片中,对数据进行处理,将处理后的结果存储至云存储子系统中。针对云存储子系统,给出了其详细架构和工作流程,设计了关键的实现代码。实验结果表明,所设计系统具有较高的运行效率,且采集的海洋数据较真实,监测结果可靠。
The large scale marine monitoring data, the current platform data processing ability is low, cannot effectively handle huge amounts of marine monitoring data, cannot satisfy the requirement of monitoring real time, therefore, we design a massive marine monitoring data based on cloud storage platform, presented the general structure of the platform, mainly including marine data monitoring subsystem and the cloud storage subsystem. In view of the ocean data monitoring subsystem, detailed analysis of the data acquisition card, sensors, AD7606 chip design process, marine monitoring data of the sensor will be sent to the data acquisition card, the acquisition card to transmit the results to AD7076 chip to deal with data, the processed results stored to cloud storage subsystem. For the cloud storage subsystem, gives the detailed structure and working process, design the key implementation code. Experimental results show that the designed system has high efficiency, and ocean data is real, reliable monitoring results.
2016,38(7): 143-148 收稿日期:2016-05-06
DOI:10.3404/j.issn.1672-7619.2016.07.032
分类号:TP393
基金项目:贵州省科学技术基金资助项目(黔科合LH字[2014]7536号);西南大学基本科研业务费专项资金资助项目(XDJK2014C109)
作者简介:赵芳云(1975-),女,硕士,副教授,研究方向为物联网技术与嵌入式系统。
参考文献:
[1] 张海山. 基于云存储视频监控系统的研究[J]. 电子设计工程, 2015, 23(10):169-171. ZHANG Hai-shan. Research of video surveillance system based on cloud storage[J]. Electronic Design Engineering, 2015, 23(10):169-171.
[2] 黄冬梅, 随宏运, 贺琪, 等. 云计算环境下基于数据关联度的海洋监测大数据布局策略[J]. 计算机工程与科学, 2015, 37(11):1989-1996. HUANG Dong-mei, SUI Hong-yuan, HE Qi, et al. A marine monitoring big data placement strategy in cloud computing environment based on data dependency[J]. Computer Engineering and Science, 2015, 37(11):1989-1996.
[3] 李林阳, 吕志平, 陈正生, 等. 海量连续运行参考站网数据云存储模型[J]. 导航定位学报, 2014, 2(3):64-70, 86. LI Lin-yang, LV Zhi-ping, CHEN Zheng-sheng, et al. Cloud storage model of massive continuous operating reference station system data[J]. Journal of Navigation and Positioning, 2014, 2(3):64-70, 86.
[4] 雷德龙, 郭殿升, 陈崇成, 等. 基于MongoDB的矢量空间数据云存储与处理系统[J]. 地球信息科学学报, 2014, 16(4):507-516. LEI De-long, GUO Dian-sheng, CHEN Chong-cheng, et al. Vector spatial data cloud storage and processing based on MongoDB[J]. Journal of Geo-information Science, 2014, 16(4):507-516.
[5] 徐芳辰, 沈苏彬. 一种基于OpenStack的云存储方案[J]. 计算机技术与发展, 2015, 25(11):76-81, 86. XU Fang-chen, SHEN Su-bin. A cloud storage solution based on OpenStack[J]. Computer Technology and Development, 2015, 25(11):76-81, 86.
[6] 屈志坚, 陈阁. 容错存储的电力系统监测数据查询优化技术[J]. 电网技术, 2015, 39(11):3221-3227. QU Zhi-jian, CHEN Ge. Query optimization for power system monitoring data with fault-tolerant storage[J]. Power System Technology, 2015, 39(11):3221-3227.
[7] 杜雅杰, 姚炎明, 焦建格. 基于数值模拟的海洋水质监测数据同步化研究[J]. 科技通报, 2015, 31(3):258-262. DU Ya-jie, YAO Yan-ming, JIAO Jian-ge. Study on synchronization of the sea water quality monitoring data based on numerical simulation[J]. Bulletin of Science and Technology, 2015, 31(3):258-262.
[8] 李浩琦, 王海斌, 汪俊. 基于CUDA的海洋监测数据并行压缩技术研究[J]. 海洋技术学报, 2014, 33(1):39-44. LI Hao-qi, WANG Hai-bin, WANG Jun. Study on the parallel compression technique for marine monitoring data based on CUDA[J]. Journal of Ocean Technology, 2014, 33(1):39-44.
[9] 王斌, 叶颖, 郭海, 等. 基于混合通信的海洋环境综合监测系统软件设计[J]. 计算机测量与控制, 2015, 23(12):4225-4228. WANG Bin, YE Ying, GUO Hai, et al. Design of ocean environment comprehensive monitoring system software based on multi-communication[J]. Computer Measurement & Control, 2015, 23(12):4225-4228.
[10] 周恩光, 李舟军, 郭华, 等. 一个改进的云存储数据完整性验证方案[J]. 电子学报, 2014, 42(1):150-154. ZHOU En-guang, LI Zhou-jun, GUO Hua, et al. An improved data integrity verification scheme in cloud storage system[J]. Acta Electronica Sinica, 2014, 42(1):150-154.