目前舰船上仍大量使用传统材料,而近年来新型材料的发展优化了舰船的设计及性能。本文从材料的角度为船舶的减振降噪提供新策略。主要介绍新型阻尼材料、负泊松比材料、超磁致伸缩材料、功能梯度材料、声子晶体和声子玻璃这几种当下热门的新型材料,分别阐述其作用机理,目前国内外的发展现状,并简要分析它们在船舶减振降噪方面的应用前景,希望能为未来新材料在舰船上的应用提供参考。
Traditional materials are still widely used in ship manufacturing at present, but the development of new materials gradually brings in new inspirations of ship design and its performance optimizing recently. This paper aims to provide new strategies for vibration and sound reduction of ships from a material standpoint. Several kinds of popular new materials including new damping material, negative Poisson's ratio material, giant magnetostrictive material, functionally graded material, phononic crystal and phononic glass are introduced. Their working theories, current research progress worldwide and the prospects of application on vibration and sound reduction of ships are stated in detail. Hope this overview can be a reference to new materials' applications on the ship design in the near future.
2016,38(12): 1-8 收稿日期:2016-03-02
DOI:10.3404/j.issn.1672-7619.2016.12.001
分类号:TB3
作者简介:朱竑祯(1991-),女,博士研究生,主要研究方向为复合材料力学。
参考文献:
[1] 王晏研, 陈喜荣, 黄光速. 复合阻尼材料最新研究进展[J]. 材料导报, 2004, 18(10):54-56. WANG Yan-yan, CHEN Xi-rong, HUANG Guang-su. The lastest research progress of multiplex damping materials[J]. Materials Review, 2004, 18(10):54-56.
[2] 刘巧宾, 卢秀萍. 智能阻尼材料的研究进展[J]. 弹性体, 2007, 17(2):76-80. LIU Qiao-bin, LU Xiu-ping. Progress of study on intellectual damping material[J]. China Elastomerics, 2007, 17(2):76-80.
[3] QUESTD T E, GREER A L. The effect of the size distribution of inoculant particles on as-cast grain size in aluminium alloys[J]. Acta Materialia, 2004, 52(13):3859-3868.
[4] 何慧敏, 王雁冰, 沈强, 等. 压电陶瓷/聚合物基新型阻尼复合材料的研究进展[J]. 材料导报, 2008, 22(1):41-44, 52. HE Hui-min, WANG Yan-bing, SHEN Qiang, et al. Research Progress in piezoelectric ceramic/polymer advanced damping materials[J]. Materials Review, 2008, 22(1):41-44, 52.
[5] 成国祥, 沈锋, 卢涛, 等. 锆钛酸铅/高分子复合膜的吸声特性[J]. 高分子材料科学与工程, 1999, 15(3):133-135. CHENG Guo-xiang, SHEN Feng, LU Tao, et al. Acoustic absorption performance of lead Zirconate Titanate (PZT)/polymer composite films[J]. Polymer Materials Science & Engineering, 1999, 15(3):133-135.
[6] 蔡俊, 秦川丽, 徐菲, 等. 0-3型压电复合材料的声学性能研究[J]. 压电与声光, 2005, 27(3):294-296. CAI Jun, QIN Chuan-li, XU Fei, et al. Study on acoustic property of 0-3 piezoelectric composites[J]. Piezoelectrics & Acoustooptics, 2005, 27(3):294-296.
[7] 秦岩, 黄志雄, 吴赞, 等. 压电阻尼复合材料在船舶承力轴承减振中的应用研究[J]. 武汉理工大学学报, 2012, 34(9):1-4. QIN Yan, HUANG Zhi-xiong, WU Zan, et al. Vibration reduction application of piezoelectric-damping composite on the hull loading capacity bearing[J]. Journal of Wuhan University of Technology, 2012, 34(9):1-4.
[8] 万光兵. 压电复合材料阻尼机理及其悬臂梁主动控制的研究[D]. 武汉:武汉理工大学, 2014. WAN Guang-bing. Piezoelectric composite material damping mechanism and active controlling of the cantilever beam[D]. Wuhan:Wuhan University of Technology, 2014.
[9] 陈冲, 岳红, 张慧军, 等. 高分子阻尼材料的研究进展[J]. 中国胶粘剂, 2009, 18(10):57-61. CHEN Chong, YUE Hong, ZHANG Hui-jun, et al. Research progress of damping macromolecule materials[J]. China Adhesives, 2009, 18(10):57-61.
[10] 周春华, 吴丽丽, 张玉芳. 碳纳米管-阻尼材料研究进展[J]. 济南大学学报(自然科学版), 2009, 23(4):429-433. ZHOU Chun-hua, WU Li-li, ZHANG Yu-fang. Research progress on carbon nanotube-damping materials[J]. Journal of University of Jinan (Sci & Tech), 2009, 23(4):429-433.
[11] KORATKAR N, WEI B Q, AJAYAN P M. Carbon nanotube films for damping applications[J]. Advanced Materials, 2002, 14(13):997-1000.
[12] KIREITSEU M, HUI D, TOMLINSON G. Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material[J]. Composites Part B:Engineering, 2008, 39(1):128-138.
[13] 倪楠楠, 温月芳, 贺德龙, 等. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6):90-101. NI Nan-nan, WEN Yue-fang, HE De-long, et al. Process on the research of structure-damping composites[J]. Journal of Materials Engineering, 2015, 43(6):90-101.
[14] 梁瑞林, 常乐, 王党朝, 等. 压电复合阻尼减振材料和压电复合吸声降噪材料中压电陶瓷应用形态研究[J]. 再生资源研究, 2004(6):39-41. LIANG Rui-lin, CHANG Le, WANG Dang-chao, et al. The study of shape in application of piezoelectric ceramics to mechanical damping compound and sound absorptive compound[J]. Recycling Research, 2004(6):39-41.
[15] 张文毓. 阻尼材料发展现状与应用进展[J]. 材料开发与应用, 2011, 26(2):75-78. ZHANG Wen-yu. Progress in development and application of damping materials[J]. Development and Application of Materials, 2011, 26(2):75-78.
[16] 史炜, 杨伟, 李忠明, 等. 负泊松比材料研究进展[J]. 高分子通报, 2003(6):48-57. SHI Wei, YANG Wei, LI Zhong-ming, et al. Advances in negative Poisson's ratio materials[J]. Polymer Bulletin, 2003(6):48-57.
[17] 杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用[J]. 力学进展, 2011, 41(3):335-350. YANG Zhi-chun, DENG Qing-tian. Mechanical property and application of materials and structures with negative Poisson's ratio[J]. Advances in Mechanics, 2011, 41(3):335-350.
[18] 张梗林, 杨德庆, 朱金文. 船用新型蜂窝隔振器减振性能分析[J]. 中国舰船研究, 2013, 8(4):52-58. ZHANG Geng-lin, YANG De-qing, ZHU Jin-wen. Performance analysis of a novel marine honeycomb vibration isolator[J]. Chinese Journal of Ship Research, 2013, 8(4):52-58.
[19] RUZZENE M. Control of wave propagation in sandwich beams with auxetic core[J]. Journal of Intelligent Materials Systems and Structures, 2003, 14(7):443-453.
[20] 赵留平. 基于夹层板的浮筏隔振系统有限元分析[J]. 中国舰船研究, 2010, 5(3):43-46. ZHAO Liu-ping. Finite element analysis of floating raft isolation system based on sandwich plate[J]. Chinese Journal of Ship Research, 2010, 5(3):43-46.
[21] 张梗林, 杨德庆. 船舶宏观负泊松比蜂窝夹芯隔振器优化设计[J]. 振动与冲击, 2013, 32(22):68-72, 78. ZHANG Geng-lin, YANG De-qing. Optimization design of an auxetic honeycomb isolator in a ship[J]. Journal of Vibration and Shock, 2013, 32(22):68-72, 78.
[22] LAKES R. Foam structures with a negative Poisson's ration[J]. Science, 1987, 235(4792):1038-1040.
[23] CHEN C P, LAKES R S. Holographic study of non-affine deformation in copper foam with a negative Poisson's ratio-0.8[J]. Scripta Metallurgica et Materialia, 1993, 29(3):395-399.
[24] ALDERSON K L, WEBBER R S, MOHAMMED U F, et al. An experimental study of ultrasonic attenuation in microporous polyethylene[J]. Applied Acoustics, 1997, 50(1):23-33.
[25] 张纳. 超磁致伸缩/压电层状磁电复合材料的磁电效应研究[D]. 天津:河北工业大学, 2011. ZHANG Na. Study on magnetoelectric effect on laminated giant magnetostrictive/piezoelectric composites[D]. Tianjin:Hebei University of Technology, 2011.
[26] 刘楚辉. 超磁致伸缩材料的工程应用研究现状[J]. 机械制造, 2005, 43(8):25-27. LIU Chu-hui. Status quo of engineering application of giant magnetostrictive materials[J]. Machinery, 2005, 43(8):25-27.
[27] 宣振兴, 邬义杰, 王慧忠, 等. 超磁致伸缩材料发展动态与工程应用研究现状[J]. 轻工机械, 2011, 29(1):116-119. XUAN Zhen-xing, WU Yi-jie, WANG Hui-zhong, et al. Development and applications research on giant magnetostrictive materials[J]. Light Industry Machinery, 2011, 29(1):116-119.
[28] 刘敬华, 张天丽, 王敬民, 等. 巨磁致伸缩材料及应用研究进展[J]. 中国材料进展, 2012, 31(4):1-12, 25. LIU Jing-hua, ZHANG Tian-li, WANG Jing-min, et al. Giant magnetostrictive materials and their applications[J]. Materials China, 2012, 31(4):1-12, 25.
[29] 刘成龙. 基于超磁致伸缩材料的能量收集装置研究[D]. 杭州:杭州电子科技大学, 2014. LIU Cheng-long. Research on vibration energy harvesting device based on GMM[D]. Hangzhou:Hangzhou Dianzi University, 2014.
[30] OHMATA K, ZAIKE M, KOH T. A three-link arm type vibration control device using magnetostrictive actuators[J]. Journal of Alloys and Compounds, 1997, 258(1/2):74-78.
[31] ANJANAPPA M, BI J. A theoretical and experimental study of magnetostrictive mini-actuators[J]. Smart Materials and Structures, 1994, 3(2):83-91.
[32] UENO T, YAMADA S. Performance of energy harvester using iron-gallium alloy in free vibration[J]. IEEE Transactions on Magnetics, 2011, 47(10):2407-2409.
[33] STALEY M E, FLATAU A B. Characterization of energy harvesting potential of Terfenol-D and Galfenol[C]//Proceedings of SPIE 5764, smart structures and materials 2005:smart structures and integrated systems. San Diego, CA:SPIE, 2005:630-640.
[34] 杨东利. 超磁致伸缩执行器及其在主动振动控制中的应用研究[D]. 杭州:浙江大学, 2002.
[35] 李扩社, 徐静, 杨红川, 等. 稀土超磁致伸缩材料发展概况[J]. 稀土, 2004, 25(4):51-56. LI Kuo-she, XU Jing, YANG Hong-chuan, et al. Development of rare earth giant magnetostrictive materials[J]. Chinese Rare Earths, 2004, 25(4):51-56.
[36] 尚尔昌. 渐变吸收层反射率的近似式[J]. 声学学报, 1965, 2(4):192-197. SHANG Er-chang. An approximate formula for the wave reflection from gradual-transition absorbers[J]. Acta Acustica, 1965, 2(4):192-197.
[37] 王源升, 杨雪, 朱金华, 等. 梯度高分子溶液的声衰减[J]. 高分子材料科学与工程, 2005, 21(5):129-132. WANG Yuan-sheng, YANG Xue, ZHU Jin-hua, et al. The underwater sound attenuation of gradient polymer solutions[J]. Polymer Materials Science and Technology, 2005, 21(5):129-132.
[38] 朱金华, 刘巨斌, 姚树人, 等. 分层高分子介质中的声吸收[J]. 高分子材料科学与工程, 2001, 17(2):34-38. ZHU Jin-hua, LIU Ju-bin, YAO Shu-ren, et al. The acoustic absorption in layered polymer materials[J]. Polymer Materials Science & Engineering, 2001, 17(2):34-38.
[39] 徐步青. 功能梯度材料板壳结构的声学问题研究[D]. 北京:北京交通大学, 2010. XU Bu-qing. Acoustic investigation on functionally graded material's plate and shell structures[D]. Beijing:Beijing Jiaotong University, 2010.
[40] HASHEMINEJAD S M, AHAMDI-SAVADKOOHI A. Vibro-acoustic behavior of a hollow FGM cylinder excited by on-surface mechanical drives[J]. Composite Structures, 2010, 92(1):86-96.
[41] 姚熊亮, 叶曦, 王献忠. 热环境中功能梯度圆柱壳声辐射特性研究[J]. 工程力学, 2013, 30(6):334-339. YAO Xiong-liang, YE Xi, WANG Xian-zhong. The acoustic radiation characteristics of functionally graded cylindrical sehlls in thermal environment[J]. Engineering Mechanics, 2013, 30(6):334-339.
[42] 鲁先孝, 马玉璞, 林新志. 环氧树脂/填料功能梯度材料的微波固化及其水声性能研究[J]. 材料开发与应用, 2007, 22(4):22-26. LU Xian-xiao, MA Yu-pu, LIN Xin-zhi. Microwave curing and underwater sound absorption of epoxy resin/filler functional graded materials[J]. Development and Application of Materials, 2007, 22(4):22-26.
[43] KUSHWAHA M S, HALEVI P, DOBRZYNSKI G, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13):2022-2025.
[44] 姜恒. 多尺度结构功能材料在水下声隐身中的应用基础研究[D]. 哈尔滨:哈尔滨工程大学, 2009. JIANG Heng. Underwater-acoustic-stealth-oriented studies on functional meaterials with multi-level microstructure[D]. Harbin:Harbin Engineering University, 2009.
[45] LIU Zheng-you, ZHANG Xi-xiang, MAO Yi-wei, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485):1734-1736.
[46] 计淘. 局域共振声子晶体的振动模型与隔振效果研究[D]. 上海:上海交通大学, 2008. JI Tao. Research on vibration model and vibration isolation effect of the locally resonant sonic crystal[D]. Shanghai:Shanghai Jiaotong University, 2008.
[47] 温熙森. 光子/声子晶体理论与技术[M]. 北京:科学出版社, 2006.
[48] 何宇漾, 靳晓雄, 魏欢. 薄板声子晶体的弯曲振动特性[J]. 噪声与振动控制, 2012(6):141-145. HE Yu-yang, JIN Xiao-xiong, WEI Huan. Bending vibration performance of sheet-shaped phononic crystals[J]. Noise and Vibration Control, 2012(6):141-145.
[49] RICHARDS D, PINES D J. Passive reduction of gear mesh vibration using a periodic drive shaft[J]. Journal of Sound and Vibration, 2003, 264(2):317-342.
[50] 温激鸿. 声子晶体振动带隙及减振特性研究[D]. 长沙:国防科学技术大学, 2005. WEN Ji-hong. Vibration attenuation and band gap characteristics of phononic crystals[D]. Changsha:National University of Defense Technology, 2005.
[51] 郁殿龙, 刘耀宗, 王刚, 等. 二维声子晶体薄板的振动特性[J]. 机械工程学报, 2006, 42(2):150-154. YU Dian-long, LIU Yao-zong, WANG Gang, et al. Vibration property of two dimension phononic crystals thin plate[J]. Chinese Journal of Mechanical Engineering, 2006, 42(2):150-154.
[52] 沈礼, 吴九汇, 陈花玲. 声子晶体结构在汽车制动降噪中的理论研究及应用[J]. 应用力学学报, 2010, 27(2):293-297. SHEN Li, WU Jiu-hui, CHEN Hua-ling. Applications of the phononic crystal structures to the reduction of brake noise[J]. Chinese Journal of Applied Mechanics, 2010, 27(2):293-297.
[53] ZHAO Hong-gang, LIU Yao-zong, WEN Ji-hong, et al. Sound absorption of locally resonant Sonic materials[J]. Chinese Physics Letters, 2006, 23(8):2132-2134.
[54] ZHAO Hong-gang, LIU Yao-zong, WEN Ji-hong, et al. Tri-component Phononic crystals for underwater anechoic coatings[J]. Physics Letters A, 2007, 367(3):224-232.
[55] JIANG Heng, WANG Yu-ren. Phononic glass:a robust acoustic-absorption material[J]. The Journal of the Acoustical Society of America, 2012, 132(2):694-699.
[56] 王育人, 姜恒, 陈猛, 等. 声子玻璃宽频水下强吸声材料研究[C]//第十四届船舶水下噪声学术讨论会论文集. 重庆:中国造船工程学会, 2013.
[57] 姜恒, 陈猛, 王育人. 声子玻璃:一种水下宽频强吸声材料[C]//第六届全国强动载效应及防护学术会议暨复杂介质/结构的动态力学行为创新研究群体学术研讨会论文集. 北京:中国力学学会, 2014.
[58] 姜恒, 陈猛, 王育人, 等. 声子玻璃物理建模的探索研究[C]//第十四届船舶水下噪声学术讨论会论文集. 重庆:中国造船工程学会, 2013.