采用有限元法对复合材料上层建筑分段吊装过程进行力学分析并提出合理的吊装方案以控制吊装过程中的变形和应力。考虑到复合材料上层建筑的特点,建立钢骨架和复合材料壳板组成的有限元模型,分析不同起吊约束对上层建筑变形的影响;选取偏于保守的约束条件,进行加载求解。通过计算,对分段结构进行合理加强,确保上层建筑在吊装过程中不发生过大的变形和应力。结合工艺要求,提出4种吊装方案,计算每种吊装方案下上层建筑分段的强度与刚度特性,优选出较为合理的吊装方案。在此基础上还将上层建筑简化为钢骨架模型,分析钢骨架的变形和应力,进一步验证吊装方的合理性,并校核连接钢骨架和复合材料板格的螺栓强度,结合工程实际给出了最优的吊装方案。
To control the deformation and stress of the lifting subsection, the finite element method is used to analyze the composite superstructure subsection and the reasonable lifting plans are put forward. Considering the characteristics of composite materials superstructure, under different constraint conditions, the response of superstructure is studied. To avoid problems of large deformation and stress in the process of lifting, the hoisting structures are modified and reinforced reasonably after calculation. For the four hoisting plans, the strength and rigidity characteristics of the superstructures are calculated correspondingly and the reasonable lifting schemes are chosen. To verify the different lifting schemes, the steel frames which are simplified from the composite superstructure block are calculated. The strength of bolts are checked. Combining with practical engineering, the optimal lifting scheme is given at last.
2017,39(2): 42-47 收稿日期:2016-05-06
DOI:10.3404/j.issn.1672-7619.2017.02.008
分类号:U663.1
基金项目:船舶预研支撑技术基金资助项目(13J1.3.2)
作者简介:胡剑(1978-),男,硕士研究生,研究方向为船舶结构力学。
参考文献:
[1] SMITH M C. Design of marine structures in composite materials[J]. Theoretical & Applied Mechanics, 1990, 6(1):293-310.
[2] 何凯. 复合材料舰船总体结构性能与局部脱层损伤数值分析方法研究[D]. 上海:上海交通大学, 2012.HE Kai. Numerical analysis for hull strength and delamination damage of composite marine structures[M]. Shanghai:Shanghai Jiao Tong University.2012.
[3] 钟兴锦. 船舶分段吊装的计算及其有限元分析[D]. 大连:大连理工大学, 2013.ZHONG Xing-jin. The calculation and finite element analysis of ship block's lifting[D]. Dalian:Dalian University of Technology, 2013.
[4] ZHANG J P, TU L H. Research on combined lifting conceptual design for large-scale ship[J].Advanced Materials Research, 2011, 295:473-476.
[5] 杨永谦, 黄贻平, 陈超核. 29000 t货船上层建筑整体吊装变形及应力计算[J]. 武汉交通科技大学学报, 1994, 03:301-306.YANG Yong-qian, HUANG Yi-ping, CHEN Chao-he. Calculation of deformation and stresses of 29000 t cargo ship's superstructure in integral assembly[J]. Journal of Wuhan Transportation University, 1994, 03:301-306.
[6] 张延昌, 王自力, 罗广恩. 船舶上层建筑整体吊装强度有限元分析[J]. 船舶工程, 2006(3):62-65.ZHANG Yan-chang, WANG Zi-li, LUO Guang-en. FE analysis of the complete lifting and mounting strength of ship superstructure[J]. Ship Engineering, 2006(3):62-65.
[7] 李永正, 曹轶, 窦培林, 等. 基于FPSO上层建筑不同吊装方案的变形控制研究[J]. 舰船科学技术, 2015(1):29-33.LI Yong-zheng, CAO Yi, DOU Pei-lin. Research on numerical simulation of superstructure integral hoisting of FPSO[J]. Ship Science and Technology, 2015(1):29-33.
[8] 李鹏, 杨亮, 冯朝闻, 等. 船舶焊接重量控制的研究与应用[J]. 金属加工(热加工), 2015(10):45-48.LI Peng, YANG Liang, FENG Zhao-wen, et al. The research and application of weight control of ship welding[J]. Metal Processing (thermal processing), 2015(10):45-48.
[9] 中国船级社.船体结构强度直接计算[S].北京:人民交通出版社, 2001.CCS. Direct calculation of hull structural strength[S]. Beijing:China Communications Press, 2001.