建立水润滑动静压阶梯腔尾轴承的三维实体模型,并将建好的模型导入到Ansys Workbench软件中进行有限元静力分析。主要研究不同腔角和腔深对船舶尾轴承力学性能的影响,结果表明:对比3种腔角的尾轴承应力、应变和位移情况发现,当腔角是20°时,尾轴承的力学性能最优;合适的腔角比例能有效的改善尾轴承的力学性能,当深浅腔的腔角比例是1:4时,此时力学性能最佳;尾轴承两腔的腔深差距不能过大,保持过渡平缓,当深腔腔深为1.6 mm,浅腔腔深为1 mm时,轴承的力学性能最优。
Establish water lubrication ladder of dynamic and static pressure cavity stern bearing three-dimensional entity model, and import the model into the finite element static analysis in ANSYS Workbench software.Mainly studied the different Angle and cavity depth on the mechanical properties of ship stern bearing,The results show that the stern bearing mechanical properties is best when the Angle of cavity is 20, Comparing three kinds of chamber Angle of stern bearing stress, strain and displacement situation; Appropriate proportion of chamber Angle can effectively improve the mechanical properties of the stern bearing. the stern bearing mechanical properties is best, when the Angle of cavity of the cavity depth proportion is 1:4; Stern bearing cavity of the deep gap do not become too big, when the deep cavity is 1.6 mm, shallow cavity is 1 mm, the stern bearing mechanical properties is best.
2017,39(5): 47-52 收稿日期:2016-06-06
DOI:10.3404/j.issn.1672-7619.2017.05.010
分类号:TH133.3
基金项目:国家自然科学基金资助项目(51575289)
作者简介:王建(1989-),男,硕士研究生,研究方向为摩擦学与表面工程
参考文献:
[1] 律辉, 王优强, 卢宪玖, 等. 基于Ansys的不同螺旋槽艉轴承的结构静力分析[J]. 润滑与密封, 2014(3):57-62. LV Hui, WANG You-qiang, LU Xian-jiu, et al. The static structural analysis of the various spiral groove stern bearing based on ansys[J]. Lubrication Engineering, 2014(3):57-62.
[2] 刘豪杰, 郭红, 张绍林. 基于FLUENT的深浅腔动静压轴承油膜压力研究[J]. 润滑与密封, 2013(10):35-38. LIU Hao-jie, GUO Hong, ZHANG Shao-lin. Research on static characteristics of deep/shallow pockets hybrid bearing based on FLUENT[J]. Lubrication Engineering, 2013(10):35-38.
[3] 杨俊, 王隽, 周旭辉, 等. 水润滑橡胶轴承结构设计[J]. 舰船科学技术, 2011, 33(8):103-107. YANG Jun, WANG Jun, ZHOU Xu-hui, et al. Design of thestructure of water lubricated rubber bearing[J]. Ship Science and Technology, 2011, 33(8):103-107.
[4] 姚世卫, 胡宗成, 马斌, 等. 橡胶轴承研究进展及在舰艇上的应用分析[J]. 舰船科学技术, 2005, 27(S1):27-30. YAO Shi-wei, HU Zong-cheng, MA Bin, et al. Research progress of rubber bearing and its application on the ship[J]. Ship Science and Technology, 2005, 27(S1):27-30.
[5] 郭胜安, 侯志泉, 熊万里, 等. 基于CFD的深浅腔液体动静压轴承承载特性研究[J]. 制造技术与机床, 2012(9). GUO Sheng-an, HOU Zhi-quan, XIONG Wan-li. Bearing characteristics study on liquid hybrid bearing based on CFD[J]. Manufacturing Technology & Machine Tool, 2012(9).
[6] 戴攀, 张亚宾, 徐华. 新型高速铣床主轴水润滑动静压轴承结构及性能研究[J]. 润滑与密封, 2009, 34(2):11-14. DAI Pan, ZHANG Ya-bin, XU Hua. The structure of new journal hybrid bearing for high-speed machine spindle and its performance[J]. Lubrication Engineering, 2009.
[7] 邵俊鹏,张艳芹,李鹏程.基于FLUENT的静压轴承椭圆腔和扇形腔静止状态流场仿真[J]. 润滑与密封, 2007, 32(1):93-95. SHAO Jun-peng, ZHANG Yan-qin, LI Peng-cheng. Static flow simulation of hydrostatic bearing ellipse and sector curve based on FLUENT[J]. Lubrication Engineering, 2007, 32(1):93-95.
[8] 陈燕生. 液体静压支承原理和设计[J]. 北京:国家工业出版社, 1980.
[9] 王芳芳, 陈渭, 张友峰. 新型水润滑动静压高速主轴轴承的流场模拟[J]. 润滑与密封, 2010, 35(12):28-31. WANG Fang-fang, CHEN Wei, ZHANG You-feng. Flow field simulation of a new type of hydrostatic high speed spindle bearing[J]. Lubrication and Seal, 2010, 35(12):28-31.