利用参数化方法设计了4种不同流道倾角的喷水推进泵椭圆形进水流道,并采用三维雷诺平均N-S方程和RNG κ-ε湍流模型对其流场和性能进行数值仿真。从流道的出流均匀性、流动分离方面来分析在保持进口速比不变,不同流道倾角时流道内流场的变化情况,为喷水推进器进水流道倾角的设计提供依据。计算结果表明:流道倾角对喷水推进泵水力性能和流场变化影响较大。在设定进速比的条件下,随着流道倾角的增大,喷水推进泵流道出口的流场均匀性变差,流道内部更容易发生流动分离现象,且在流道倾角为47°时的喷水推进泵在设计工况下的流场特性最差。
Four different inclination waterjet duct of an elliptic inlet are designed by the parametric method, and the flow field and performance are simulated by using the three-dimensional Reynolds averaged N-S equation and S-A turbulence model. The flow field in different inclination waterjet duct is analyzed from discharge uniformity of the duct, flow separation aspects with inlet velocity ratio unchanged, so that the design basis of the inclination waterjet duct is provided. The calculation results show that the inclination of waterjet duct have great influence on the flow field and hydraulic performance. Under the condition of setting into the inlet velocity ratio, with the increase of the inclination angle of waterjet duct, the flow field of waterjet duct is more uniformity, the cavitation phenomenon of the duct is more likely to occur, and when the inclination angle of waterjet duct attain 47°, flow field characteristics of waterjet duct at the design condition is the worst.
2017,39(9): 49-53 收稿日期:2017-06-13
DOI:10.3404/j.issn.1672-7649.2017.09.010
分类号:U664.34
基金项目:江苏海事职业技术学院校级重点课题资助项目(2015KJZD-02)
作者简介:李臣(1988-),男,助教,研究方向为船舶喷水推进
参考文献:
[1] 康希宗, 王绍增. 喷水推进器进水流道空化和流动分离的模拟控制研究[J]. 理论与实践, 2013, 33(3):20-25.
[2] BULTEN N. Review of thrust prediction method based on momentum balance for ducted propellers and waterjets[C]//Houston:Proceedings of FEDSM 2005 ASME, 2005.
[3] 魏应三, 王永生, 丁江明. 喷水推进器进水流道倾角与流动性能关系研究[J]. 舰船科学技术, 2009, 31(4):49-52. WEI Ying-san, WANG Yang-sheng, DING Jiang-ming. Research on effect of inclination on characteristics of waterjet duct[J]. Ship Science and Technology, 2009, 31(4):49-52.
[4] 常书平, 王永生, 庞之洋, 等. 喷水推进器进水流道内流场数值模拟与分析[J]. 武汉理工大学学报:交通科学与工程版, 2010, 34(1):47-52.
[5] 丁江明, 王永生. 喷水推进器进水流道参数化设计方法[J]. 哈尔滨工程大学学报, 2011, 32(4):423-426. DING Jiang-ming, WANG Yong-sheng. Research on the parametric design of an inlet duct found in a marine waterjet[J]. Journal of Harbin Engineering University, 2011, 32(4):423-426.
[6] 王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京:清华大学出版社, 2004.
[7] 罗忠, 陈志坚, 孙春生. 喷水推进流道格栅的涡激效应与结构强度[J]. 船舶工程, 2007, 29(8):19-21.
[8] TERWISGA V. Waterjet propulsive performance prediction- waterjet inlet duct, pump loop and waterjet system tests and extrapolation[C/CD]//Final Recommendations of the Specialist Committee on Validation of Waterjet Test Procedures to the 24th ITTC. Edinburgh, UK:ITTC, 2005.
[9] 魏应三, 王永生. 喷水推进器进水流道不均匀度统一描述[J]. 武汉理工大学学报, 2009, 31(8):159-163.
[10] 刘润闻, 黄国富. 入口唇角对喷水管道流动性能影响的数值分析[J]. 中国造船, 2011, 52(1):39-43. LIU Run-wen, HUANG Guo-fu. Numerical study on effect of inlet lip on hydrodynamics for waterjet propulsion[J]. Shipbuilding of China, 2011, 52(1):39-43.