在节能减排的趋势下,人们开始探求开发新能源作为辅助动力并入船舶电网。船舶电网是一个有限电源系统,电网谐波含量较高。新能源并网接口是逆变器,采用的脉冲宽度调制(PWM)技术使并网逆变器产生高频谐波电流注入船舶电网,容易造成船舶电网不稳定。需在逆变器后端加上能够滤除高频谐波的LCL型滤波器,而陆地上传统的并网逆变器 LCL 滤波器参数设计的试凑法很难满足船舶新能源逆变并网要求。鉴于此采用遗传算法对船舶电网侧 LCL 滤波器各参数优化设计的方法,综合考虑船舶电网LCL型滤波器的约束条件选择出最优解。仿真结果表明,采用遗传算法优化参数的滤波器对逆变器输出谐波进行有效抑制,为船舶新能源并网提供理论支撑。
In the trend of energy-saving emission reduction, people began to explore the development of new energy as an auxiliary power into the ship's power grid. Ship power grid is a limited power system, the higher the harmonic content of the grid.The grid-connected interface is the inverter. The pulse width modulation (PWM) technology makes the grid-connected inverter generate high-frequency harmonic current into the ship's power grid which will easily lead to ship power grid instability. There is a need to add in the inverter back-end to filter out high-frequency harmonics LCL-type filter, The design of LCL filter parameter of traditional grid-connected inverter on land is very difficult to meet the requirements of grid-connected inverter. In view of this, genetic algorithm is used to optimize the parameters of the LCL filter on the ship's power grid side, and the optimal solution of the LCL filter is considered synthetically. The optimal solution is obtained by considering the constraints of the ship LCL filter. The simulation results show that the filter with parameters optimized by genetic algorithm has good network side harmonic suppression ability, which provides theory support for the Ship new energy grid connection.
2018,(): 114-119 收稿日期:2016-12-01
DOI:10.3404/j.issn.1672-7649.2018.01.020
分类号:TM464
基金项目:国家自然科学基金资助项目(51179144)
作者简介:靖震(1991-),男,硕士研究生,研究方向为船舶电力系统仿真及船舶电气自动化
参考文献:
[1] 严新平. 新能源在船舶上的应用进展及展望[J]. 船海工程, 2010, 39(6): 111-115.
YAN Xin-ping. Progress review of new energy application in ship[J]. Ship & Ocean Engineering, 2010, 39(6): 111-115.
[2] 孙义存. 船舶新能源动力系统现状与发展趋势[J]. 中国水运, 2012, 12(7): 87-88.
SUN Yi-cun. Present situation and development trend of marine new energy power system[J]. China Water Transport, 2012, 12(7): 87-88.
[3] 陈姝慧, 王红梅. 基于电网电压前馈的三相LCL并网逆变器电流控制方法研究[J]. 电气工程学报, 2016, 11(1): 24-31.
CHEN Shu-hui, WANG Hong-mei. Research on current control scheme based on grid voltage feed forward for three-phase LCL-type grid-connected inverters[J]. Journal of Electrical Engineering, 2016, 11(1): 24-31.
[4] 张勇. 分布式发电系统中的LCL滤波器性能分析和设计[J]. 电力电容与无功补偿, 2013, 34(6): 29-32.
[5] 韩琳, 陈柏超, 陈晓国. 三相整流电路谐波注入滤波器方法[J]高电压技术, 2003, 3(33): 42-46.
[6] 李永辉. 船舶并网逆变器控制策略的研究[D]. 大连: 大连海事大学, 2014.
[7] 陈东, 张军明, 钱照明. 带LCL滤波器的并网逆变器单电流反馈控制策略[J]. 中国电机工程学报, 2013, 33(9): 10-16.
[8] 张宪平, 李亚西, 等. 三相电压型整流器的LCL滤波器分析与设计[J]. 电气应用, 2007, 26(5): 51-53.
[9] 陈伟, 韦徵. 三相并网逆变器LCL滤波器的研究及新型有源阻尼控制[J]. 电工技术学报, 2014, 29(6): 71-79.
[10] DANNEHL J, FUCHS FW, HANSEN S, et al. Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters[J]. Energy Conversion Congress and Exposition, 2009, 46(4): 1509-1517
[11] 阮新波, 王学华, 潘东华, 等. LCL型并网逆变器的控制技术[M]. 北京: 科学出版社, 2015: 60-71.
[12] PEÑA-ALZOLA R, LISERRE M, BLAABJERG F, et al. Analysis of the passive damping losses in LCL-filter-based grid converters[J]. IEEE Transactions on Power Electronics, 2013, 28(6): 2642-2646.
[13] 孙超, 刘以建, 等, 三相并网逆变器LCL滤波器的简明设计[J]. 通讯电源技术, 2012, 29(2): 47-49
[14] 雷英杰, 张善文. MATLAB遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2014: 55-59.
LEI Ying-jie, ZHANG Shan-wen. MATLAB genetic algorithm toolbox and its application[M]. Xi'an: Xi'an University of Electronic Science and Technology Press, 2014: 55-59.