准确获得潜艇热尾流浮升、扩散规律及其水面温度分布特征是发展红外探潜技术的关键。本文基于动网格技术,建立潜艇水下航行三维计算模型,分别采用壁面法与VOF法对潜艇热尾流浮升过程进行仿真。研究获得了潜艇热尾流的浮升、扩散规律及其水面温度分布与红外识别特征。在此基础上,分析了不同冷却水排放方案下热尾流水面温度分布特征的变化规律,提出了抑制热尾流浮升、减弱水面温度特征的方法。本文研究结果可为下阶段的实验研究与测量提供一定理论基础。
Obtaining accurately the buoyancy trajectory and the temperature characteristics on sea surface is the basis of infrared technology for detecting submarine. In this paper, the navigation process of submarine in the 3-D sea environment is studied numerically. The dynamic meshing technique is employed and both of fixed wall method and VOF method are used to simulate the buoyancy process of thermal wake. The buoyancy trajectory of the thermal wake, the corresponding temperature distribution and infrared characteristics on sea surface are obtained. Furthermore, the variation of temperature distribution characteristics on sea surface with the discharge program of cooling water is analyzed, and the suppression methods are proposed. The paper provide theoretical base for the experimental study in the future.
2018,40(3): 8-13 收稿日期:2017-03-30
DOI:10.3404/j.issn.1672-7649.2018.03.002
分类号:U674.76
基金项目:哈尔滨工业大学研究生教育教学改革研究资助项目(JGYJ-201650);哈尔滨工业大学(威海)共建基金资助项目(2016DXGJZD01)
作者简介:来庆志(1990-),男,硕士研究生,主要研究方向为水下目标的红外辐射特性
参考文献:
[1] 张昊春, 吉宇, 马锐, 等. 水下航行体热尾流浮升特性研究[J]. 舰船科学技术, 2015, 07:24-28.ZHANG Hao-chun, JI Yu, MA Rui, et al. Buoyant characteristics of thermal wakes discharged by underwater vehicles[J]. Ship Science and Technology, 2015, 07:24-28.
[2] MERRITT G E. Wake growth and collapse in stratified flow[J]. AIAA Journal, 1973, 12(7):940-949.
[3] 张健, 杨立, 袁江涛, 等. 水下航行器热尾流试验研究[J]. 实验流体力学, 2008, 22(3):7-14.ZHANG Jian, YANG Li, YUAN Jiang-tao, et al. Experimental research of underwater vehicle thermal wakes[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3):7-14.
[4] WREN G G, MAY D. Detection of submerged vessels using remote sensing techniques[J]. Australian Defense Force Journal, 1997, 127(11):9-15.
[5] MARION B, OLIVIER E. Experimental investigation of the collapse of a turbulent wake in a stratified fluid physics of fluids[J]. Physics of fluids, 2002, 14(2):791-801.
[6] THOMAS S L, DAVID C F, JOSEPH A W. Application of direct and large-eddy simulation methods to late wakes of submerged bodies[C]//IEEE Proceedings of the Users Group Conference, 2004:112-118.
[7] 张健, 陈翾, 杨立, 等. 水下航行器排放冷却水温度分布特性研究[J]. 船舶力学, 2009, 04:533-539.ZHANG Jian, CHEN Xuan, YANG Li, et al. Study of temperature characteristic of cooling water discharged by underwater vehicle[J]. Journal of Ship Mechanics, 2009, 04:533-539.
[8] 吴猛猛, 陈伯义, 张修峰, 等. 温度分层海洋中水下航行体引起水面特征参数变化规律的研究[J]. 红外技术, 2010, 04:242-246.WU Meng-meng, CHEN Bo-yi, ZHANG Xiu-feng, et al. The study on the varied laws of surface feature parameters caused by a going body underwater in the temperature stratification ocean[J]. Ship Science and Technology, 2015, 07:24-28.
[9] 戴天奇, 姚世卫, 魏志国. 基于动网格技术的潜艇热尾流浮升规律研究[J]. 舰船科学技术, 2015, 05:86-89.DAI Tian-qi, YAO Shi-wei, WEI Zhi-guo. Numerical simulation of thermal wake buoyant law based on dynamic meshing technique[J]. Ship Science and Technology, 2015, 05:86-89.
[10] SHI Zhi-guang, LI Ji-cheng. Detectability of the infrared surface features of the wake behind a moving underwater body[C]//AOPC2015:Optical and Optoelectronic Sensing and Imaging Technology, 2015.