为探讨固支点蚀损伤钢板结构在空爆冲击波载荷作用下的动态响应,利用有限元分析软件Ansys/LS-DYNA,开展了空爆冲击波对固支点蚀钢板板的毁伤作用数值模拟计算,探讨了点蚀损伤深度、点蚀损伤分布密度及点蚀损伤分布位置对固支钢板结构在空爆冲击波载荷作用下动态响应的影响。结果表明,点蚀损伤深度、点蚀损伤分布密度均对板的动态承载能力有较显著影响,而点蚀损伤分布位置则影响非常小。
The main objective of this study is to explore the dynamic response of a clamped square steel plate with corrosion pits under the air blast loads. Through finite element program Ansys/LS-DYNA, simulations of the response behavior of the corroded plate subjected to the blast loading are conducted. The effects of influential parameters including, degree of pit, pit depth, and different corrosion patterns at each side of the plate, in both-sided corroded plates. The results show that by increasing degree of pitting and depth of pits can cause the most reduction of dynamic load carrying capacity, whereas position of pitted surface in respect to applied loading affects the dynamic load carrying capacity of corroded plates insignificantly.
2018,40(4): 27-32,38 收稿日期:2018-01-29
DOI:10.3404/j.issn.1672-7649.2018.04.006
分类号:U661.4
基金项目:国家自然科学基金资助项目(51409253)
作者简介:王金(1990-),男,硕士,助理工程师,研究方向为船舶与海洋结构物设计制造
参考文献:
[1] 吴梵, 滑林. 腐蚀、疲劳损伤下船体结构可靠性研究现状与展望[J]. 中国舰船研究, 2017, 12(5):52-63.WU Fan, HUA Lin. Current status and prospects of reliability analysis of hull structures under corrosion and fatigue damage[J]. Chinese Journal of Ship Research, 2017, 12(5):52-63.
[2] TSCF. Experimental and theoretical investigation of strength of corroded hull elements[R]. Project 300, Report No. 84-3438, Tanker Structure Co-operative Forum, 1984.
[3] DAIDORA J C, PARENTE J, ORISANOLU I R, et al. Residua strength assessment of pitted plate panelsl[R]. SSC-394, Ship Structure Committee, 1997.
[4] FLAKS V Y. Correlation of pitting corrosion of aluminum plates and reduction of load-beating capacity under tension[J]. Fiziko-Khimicheskaya Mekhanika Materialov, 1987, 14(1):89-93.
[5] PAIK J K. Ultimate strength of ships time-variant risk assessment of aging ship staking account to general/pit corrosion correlation, fatigue cracking and local dent damage[R]. Technical Report RD2002-11, American Bureau of Shipping, 2002.
[6] PAIK J K, LEE J M, KO M J. Ultimate shear strength of plate elements with pit corrosion wastage[J]. Thin-Walled Structures, 2004, 42:1161-1176.
[7] DUNBAR T E, PEGG N, TAHERI F, et al. A computational investigation of the effects of localized corrosion on plates and stiffened panels[J]. Marine Structures, 2004, 17:385-402.
[8] NAKAI T, MATSUSHITA H, YAMAMOTO N, et al. Effect of pitting corrosion on local strength of hold frames of bulk carriers (1st report)[J]. Marine Structures, 2004, 17:403-432.
[9] NAKAI T, MATSUSHITA H, YAMAMOTO N, et al. Effect of pitting corrosion on local strength of hold frames of bulk carriers(2nd report)-lateral distortional buckling and local face buckling[J]. Marine Structures, 2004, 17:612-641.
[10] NAKAI T, MATSUSHITA H, YAMAMOTO N. Effect of pitting corrosion on the ultimate strength of steel plate subjected to in-plane compression and bending[J]. Journal of Marine Science and Technology, 2006, 11:52-64.
[11] HUANG Y, ZHANG Y, LIU G, et al. Ultimate strength assessment of hull structural plate with pitting corrosion damnification under biaxial compression[J]. Ocean Engineering, 2010, 37:1503-1512.
[12] 徐强, 万正权. 含坑点腐蚀的壳板有限元方法[J]. 船舶力学, 2010, 14(1-2):84-93.XU Qiang, WAN Zheng-quan. Finite element method of pitting corrosive shell[J]. Journal of Ship Mechanics, 2010, 14(1-2):84-93.
[13] 徐强, 万正权. 含坑点腐蚀的深海耐压球壳有限元分析[J]. 船舶力学, 2011, 15(5):498-505.
[14] RAHBAR-RANJI A. Plastic collapse load of corroded steel plates[J]. Sadhana-Academy Proceed. Engineering Science, 2012, 37(3):341-349.
[15] RAHBAR-RANJI A. Ultimate strength of corroded steel plates with irregular surfaces under in-plane compression[J]. Ocean Engineering, 2012, 54:261-269.
[16] RAHBAR-RANJI A. Elastic buckling strength of corroded steel plates[J]. Sadhana-Academy Proceed. Engineering Science, 2013, 38(1):89-99.
[17] CONWEP, Conventional Weapons Effects, US Army TM-855, 1992.
[18] LS-DYNA keyword user's manual[Z] Livermore Software Technology Corporation, 2013.
[19] 吴林杰, 侯海量, 朱锡, 等. 水下接触爆炸下防雷舱舷侧空舱的内压载荷特性仿真研究[J]. 兵工学报, 2017, 38(1):143-150.WU Lin-jie, HOU Hai-liang, ZHU Xi, et al. Numerical simulation on inside load characteristics of broadside cabin of defensive structure subjected to underwater contact explosion[J]. Acta Armamentarii, 2017, 38(1):143-150.
[20] 吴有生, 彭兴宁, 赵立本. 爆炸载荷作用下舰船板架的变形与破损[J]. 中国造船, 1995, (4):55-61.WU You-sheng, PENG Xing-ning, ZHAO Li-ben. Plastic deformation and damage of naval panels subjected to explosion loading[J]. Shipbuilding of China, 1995, (4):55-61.