为了研究两端带壳圆柱体战斗部爆炸后产生破片的速度分布,采用有限元仿真分析了球体战斗部爆炸,并将仿真计算结果与Gurney公式的计算结果进行了对比,仿真结果与理论计算结果吻合良好,验证了通过分离节点法计算带壳战斗部的破片分布的可行性。对不同长径比的带壳圆柱体战斗部的爆炸过程进行仿真计算,分析了长径比对破片大小、侧壁速度分布、端盖与侧壁的速度变化规律影响。研究结果表明:长径比较大时,侧壁的破片飞散的角度较小,破片大小相对较小;侧壁速度分布沿轴向基本满足抛物线的分布规律,长径比达到一定大小后,抛物线的峰值则趋于稳定;端盖速度的变化规律基本满足随着长径比的增大呈线性下降的趋势;侧壁的平均速度则是随着长径比的增大而增长,但存在一定的极限。
In order to research the distribution of fragments' velocity generated by the explosion cylinder warhead that has end caps at both ends explosion, analyzing the explosion of spherical warhead with finite element method. the results of simulation analysis is compared with Gurney formula, the two results were in good agreement, validating that the feasibility of node-split method to calculate explosion of warhead. The explosion process of cylinder warhead that has shell at both ends with different L/D is simulated, the influence of L/D on fragment size, velocity distribution of the side wall fragment, velocity variation of end cap and side wall is analyzed. the result show that when L/D is large, the scattering angle and fragment size of side walls is smaller; velocity distribution of the side wall fragment in the axial direction to meet the distribution of the parabola distribution, L/D reaches some certain value, the vertex of parabola stabilized; velocity variation of end cap satisfies the linear decrease with the increase of the L/D, velocity variation of side wall decrease with the L/D, and a limit is exist.
2018,40(7): 6-10 收稿日期:2017-04-05
DOI:10.3404/j.issn.1672-7649.2018.07.002
分类号:O344.7
基金项目:国家自然科学基金资助项目(51409253,51479204)
作者简介:胡年明(1989-),男,博士研究生,研究方向为船舶结构强度与振动
参考文献:
[1] 惰树元, 王树山. 终点效应学[M]. 北京:国防工业出版社, 2000.
[2] KURKI T. Contained explosion inside a naval-vessele evaluation of the structure response[D]. Helsinki University of Technology, 2007.
[3] GURNEY R W. The initial velocities of fragments from bombs, shell and grenades[R]. Aberdeen, MD, US:Ballistic Research Laboratory, 1943.
[4] ARNOLD W, ROTTENKOLBER E. Fragment mass distribution of metal cased explosive charges[J]. International Journal of Impact Engineering, 2008, 35(12):1393-1398.
[5] HU Y, WU C, LUKASZEWICZ M, et al. Characteristics of Confined Blast Loading in Unvented Structures[J]. International Journal of Protective Structures, 2011, 2(1):21-42.
[6] MOXNES J F, PRYTZ A K, FRØYLAND Ø, et al. Experimental and numerical study of the fragmentation of expanding warhead casings by using different numerical codes and solution techniques[J]. Defense Technology, 2014, 10(2):161-176.
[7] KONG X, WU W, LI J, et al. Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings[J]. International Journal of Impact Engineering, 2014, 65(2):146-162.
[8] KONG X, WU W, LI J, et al. A numerical investigation on explosive fragmentation of metal casing using Smoothed Particle Hydrodynamic method[J]. Materials and Design, 2013, 51(60):729-741.
[9] 印立魁, 蒋建伟. 多层球形预制破片战斗部破片初速场的计算模型[J]. 含能材料, 2014, 22(3):300-305.YIN L K, JIANG J W. Calculation Model of Initial Velocity Field on Multilayered Spherical Fragments Warhead[J]. Chinese Journal of Energetic Materials, 2014, 22(3):300-305.
[10] TANAPORNRAWEEKIT G, KULSIRIKASEM W. Effects of Material Properties of Warhead Casing on Natural Fragmentation Performance of High Explosive (HE) Warhead[J]. World Academy of Science, Engineering and Technology, 2013, 59(2):1275-1280
[11] 吴林杰, 朱锡, 侯海量, 等. 空中近距爆炸下加筋板架的毁伤模式仿真研究[J]. 振动与冲击, 2013, 32(14):77-81.Lin-Jie W U, HOU H L, CHEN C H. Simulations for damage modes of a stiffened plate subjected to close-range air-blast loading[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2013, 32(14):77-81+126.