夹层板结构以其优异的耐腐蚀性能、高比强度、高比刚度等优点,广泛应用于修船、造船领域。本文以船用I型金属夹层板为研究对象,采用理论与数值方法研究冰撞载荷作用下夹层板的抗冲击性能。提出了适用于I型金属夹层板和冰碰撞问题的冰体材料模型,并对该材料模型进行验证,得出本文的仿真结果与ISO理论曲线及试验数据结果吻合较好,证明该冰体材料模型可以应用于夹层板和冰碰撞问题的数值仿真中。同时,将其应用于冰体和夹层板的碰撞仿真中,对比了传统板架结构与金属夹层板在冰载荷作用下的碰撞力和能量吸收,研究不同的夹层板撞击位置以及冰体形状对夹层板结构的抗冲击性能的影响,为新型夹层板结构的应用提供参考。
The sandwich structure is widely used in ship repair and shipbuilding fields because of its superior corrosion resistance, high specific strength and high specific stiffness. In this paper, the marine I-type metal sandwich panel is taken as the research object, and the theoretical and numerical methods are used to study the impact resistance of the sandwich panel under the ice-impact load. An ice body material model suitable for the I-type metal sandwich plate and the ice collision problem is proposed, and the material model is verified. The simulation results in this paper are in good agreement with the ISO theoretical curves and the experimental data. It is proved that the model can be used in the numerical simulation of the sandwich plate and ice collision problems. At the same time, it is applied to the collision simulation of ice body and sandwich plate. The collision force and energy absorption of traditional plate structure and metal sandwich plate under ice load are compared. The impace resistance factors composed of impact positions and ice body shapes is analyzed, that provide a reference for the application of the new sandwich plate provides a reference.
2018,40(12): 11-15 收稿日期:2017-10-09
DOI:10.3404/j.issn.1672-7649.2018.12.003
分类号:U661.43
基金项目:国家自然科学基金青年基金资助项目(51109101/51509115);江苏省高校自然科学研究重大资助项目(17KJA580002);江苏省高校重点实验室开放研究基金课题资助项目
作者简介:柴明媚(1992-),女,硕士研究生,主要从事船舶结构力学性能研究
参考文献:
[1] 李洪升, 杜小振, 岳前进. 海冰强度对应变速率敏感性及其演化模式[J]. 大连理工大学学报, 2003, 43(5):686-690 LI Hong-sheng, DU Xiao-zhen, YUE Jin-jin. The sensitivity and evolution model of sea ice strength to strain rate[J]. Journal of Dalian University of Technology, 2003, 43(5):686-690
[2] LIU Z H, AMDAHL J, LOSET S. Plasticity based material modelling of ice and its application to ship-iceberg impacts[J]. Cold Regions Science and Technology, 2011, 65(3):326-334
[3] WANG B, HAN C Y, ROGER B. Ship and ice collision modeling and strength evaluation of LNG ship structure[C]//Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. Portugal, Estoril, 2008:OMAE 2008-57134.
[4] JIA Zhi-bin, JONAS W. Numerical analysis of noliner dynamic structural behabiour of ice-loaded side-shell structures[J]. International Journal of Steel Structures, 2009, 9(3):219-230
[5] ROLAND F, REINERT T. Laser welded sandwich panels for the shipbuilding industry[C]//Lightweight Construction-Latest Developments, London, 2000:1-12.
[6] METSCHKOW B. Sandwich panels in shipbuilding[J]. Polish Maritime Research, 2006(s1):5-8
[7] KUJALA P, KLANAC A. Steel sandwich panels in marine applications[J]. Brodogradnja, 2005, 56(4):305-314
[8] Stephen J. The confined compressive strength of polycrystalline ice[J]. Journal of ClacioLogy, 1982(98):172-173
[9] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48
[10] DALEY C. Compilation medium of scale ice indentation test results and comparison to ASPPR[R]. Ottawa, Canada, 1994.
[11] PALMER A C, DEMPSEY J P, MASTERSON D M. A revised ice pressure-area curve and a fracture mechanics explanation. Cold Regions Science and Technology, 2009, 56(5):73-76.
[12] DALEY C. Compilation medium of scale ice indentation test results and comparison to ASPPR[R]. Ottawa, Canada, 1994.
[13] 苏干. 极地运输船舶冰载荷及破冰结构研究[D]. 镇江:江苏科技大学, 2016.