针对反舰武器爆炸产生的破片,舰船舷侧可以设置陶瓷/钢复合装甲进行防护。本文利用数值方法分析陶瓷/钢复合装甲抗高速破片侵彻性能,在验证数值方法的基础上,探究破片形状、破片初始速度、陶瓷与钢板不同厚度组合对陶瓷/钢复合装甲抗侵彻性能影响,分析破片侵彻陶瓷/钢复合装甲过程。结果表明,陶瓷/钢复合装甲抗FSP弹侵彻性能最差,在设计陶瓷/钢复合装甲时,可选FSP破片作为设计载荷;抗锥形弹侵彻性能最好,抗锥形弹的最优陶瓷/钢复合结构比钢板的弹道极限速度提高了224 m/s;随着侵彻速度增加,破片的剩余质量近似呈线性减小,弹靶之间的作用力峰值不断增加,作用力峰值出现时间不断提前,弹靶作用时间降低。
In order to resist the fragment that produced by ani-warship weapon, we can setup ceramic/steel light armor in the shipboard of warship. This paper used numerical study the anti-penetration of ceramic/steel light armor subjected to the impact of high velocity fragment. Based on the valid numerical method, we studied the geometry of fragment, the impact velocity and the different composition of ceramic with steel. We analysis the process tha fragment impact ceramic/steel light armor. Result shows ceramic/steel light armor has the worst anti-penetration performance under FSP project, we can select FSP fragment as the design load when we choose ceramic/steel armor. The ceramic/steel perform best under the conical bullet impact and the ballistic limit velocity improved 224m/s compare with steel. With the increase of impact velocity, the residual mass of bullet linear decrease. The impact force increase, the appear time of force advanced and the contacr time decrease when the impacr velocity is high.
2019,41(5): 34-38 收稿日期:2018-08-07
DOI:10.3404/j.issn.1672-7649.2019.05.007
分类号:U661.4
基金项目:国家安全重大基础研究资助项目;国家自然科学基金资助项目(51679246,51479204)
作者简介:黄晓明(1978-),男,博士,研究方向为舰船毁伤与防护
参考文献:
[1] WOODWARD R L, GOOCH W A, et al. A study of fragmentation in the ballistic impact of ceramics[J]. International Journalist of Impact Engineering1, 1994, 15(5):605-618
[2] 侯海量, 朱锡, 阚于龙. 陶瓷材料抗冲击响应特性研究进展[J]. 兵工学报, 2008, 29(1):94-98
[3] MEI Hui, ZHANG Li-dong, XU Hong-tui, et al. Damage mechanism of a crbon fiber ceramic composite during the step-loading indentation and its effect on the mechanical properties[J]. Composite:Part B, 2014, 56:142-148
[4] HAZELL P. J., Appleby-Thomas G. J., S. Toone Ballistic compaction of a confined ceramic powder by a non-deforming projectile:experiments and simulations[J]. Materials and Design, 2014, 56:943-952
[5] SEIFERT W, STRASSBURGER E, GREFEN S, et al. Experimental study about the influence of adhesive stiffness to the bonding strengths of adhesives for ceramic/metal targets[J]. Defence Technology, 2016, 12:188-200
[6] HUANG Chin-Yu, CHEN Yu-Liang. Design and impact resistant analysis of functionally graded Al2O3-ZrO2 ceramic composite[J]. Materials and Design, 2016, 91:294-305
[7] KUDRYAVTSEV O A, SAPOZHNIKOV S B. Numerical simulations of ceramic target subjected to ballistic impact using combined DEM/FEM approacht[J]. International Journal of Mechanical Sciences, 2016, 114:60-70
[8] 谈梦婷, 张先锋, 何勇, 等. 长杆弹撞击装甲陶瓷的界面击溃效应数值模拟[J]. 兵工学报, 2016, 37(4):627-634
[9] BRETTG C, ELEANOR A G, FRANK W Z. Failure initiation during impact of metal spheres onto ceramic targets[J]. International Journal of Impact Engineering, 2013, 55:11-23
[10] 侯海量, 朱锡, 李伟. 轻型陶瓷/金属复合装甲抗弹机理研究[J]. 兵工学报, 2013, 34(1):105-114 HOU Hai-liang, ZHU Xi, LI Wei. Investigation on bullet proof mechanism of light ceramic/steel composite-armor[J]. Acta Armamentarii, 2013, 34(1):105-114