针对螺栓连接薄层单元建模中存在的不确定性问题开展研究。对薄层的厚度、弹性模量和密度等参数进行正交设计,通过信噪比分析和回归分析,建立了连接结构振动响应和薄层参数的经验表达式,最后进行了优化分析。研究表明,鲁棒设计在薄层单元的不确定性建模中的应用是可行的,该方法完善了螺栓连接薄层单元的建模理论。
The uncertainty problem in finite element modeling was concerned. Dynamic response parameters in the thin-layer evaluated were the thickness, young modulus and density of the thin-layer element. An orthogonal array, signal-to-noise (S/N) ratio were employed to analyze the effect of these the dynamic response parameters. With the expression got from regression analysis, an optimization was executed to find the best parameters of the thin-layer element. The study shows that the robust method was suitable to solve the uncertainty problem with minimum number of trials as compared with a full factorial design.
2019,41(7): 137-140 收稿日期:2019-03-05
DOI:10.3404/j.issn.1672-7649.2019.07.027
分类号:TJ391
作者简介:李昊(1978-),男,博士,工程师,研究方向为导弹发动机研究
参考文献:
[1] CRAWLEY E.F, AUBERT A.C. Identification of nonlinear structural elements by force-state mapping[J]. American Institute of Aeronautics and Astronautics Journal, 1986, 24:155-162
[2] Y. REN, T.M. LIM, M.K. LIM Identification of properties of nonlinear joints using dynamic test data[J]. Journal of Vibration and Acoustics, 1998, 120(2):324-330
[3] Y. REN, C.F. BEARDS Identification of effective linear joints using coupling and joint identification techniques[J]. Journal of Vibration and Acoustics, 1998, 120(2):331-338
[4] X. MA, BERGMAN L, A.F. VAKAKIS. Identification of bolted joints through laser vibrometry[J]. Journal Sound and Vibration, 2001, 246(3):441-460
[5] W.D. IWAN. A distributed-element model for hysteresis and its steady-state dynamic response[J]. ASME Journal of Applied Mechanics, 1966, 33:893-900
[6] AHMADIAN H, JALALI H. Generic element formulation for modelling bolted lap joints[J]. Mechanical Systems and Signal Processing, 2007, 21(5):2318-2334
[7] DESAI C S, ZAMAN M M, LIGHTNER J G. Thin-layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1):19
[8] MAYER M, GAUL L. Segment-to-segment contact elements for modeling joint interfaces in finite element analysis[J]. Mechanical Systems and Signal Processing, 2007, 21(2):724
[9] GANGADHARAN SN, NIKOLAIDIS E, HAFTKA RT. Probabilistic system identification of two flexible joint models[J]. Aiaa Journal, 1991, 29(8):1319-1326
[10] SL QIAO, PILIPCHUK VN, IBRAHIM RA. Modeling and Simulation of Elastic Structures with Parameter Uncertainties and Relaxation of Joints[J]. Journal of Vibration & Acoustics, 2001, 123(1):45-52
[11] GUO Q T, ZHANG L M. Identification of the mechanical joint parameters with model uncertainty[J]. Chinese Journal of Aeronautics, 2005, 18(1):47
[12] 姜东, 吴邵庆. 基于薄层单元的螺栓连接结构接触面不确定性参数识别[J]. 工程力学, 2015, 32(4):220-227 JIANG Dong, WU Shaoqing. Parameter identification of bolted-joint based on the model with thin-layer elements with isotropic constitutive relationship[J]. Engineering Mechanics, 2015, 32(4):220-227. (in Chinese)
[13] C ZANG. Robust design of a two degree freedom system due to the parameter uncertainty[J]. Chinese Journal of Mechanical Engineering, 2006, 21(6):30
[14] PANDE G.N, SHARMA K.G. On joint/interface elements and associated problems of ill-conditioning[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3:293-300
[15] SHARMA K.G, DESAI C.S. Analysis and implementation of thin-layer element for interfaces and joints[J]. Journal of Engineering Mechanics, 1992, 118:2442-2462
[16] TAGUCHI G. Introduction to quality engineering[J]. A Practical Guide to Quality Management in Spinning, 1986, 19:1-10