为实现带缆水下潜器的航迹跟踪控制,对带缆水下潜器设计了运动学反步控制器和动力学滑模控制器,并引入生物启发神经动力学模型来平滑反步控制器中因跟踪误差较大,引起的输出速度跳变。对水下潜器折线路径跟踪进行仿真,并分析脐带缆对跟踪效果的影响。结果显示,所设计控制器的路径跟踪误差小,跟踪速度在初始阶段以及折线路径拐点处过渡平滑;脐带缆使跟踪效果变差。对带缆潜器这一刚性和柔性部件相互连接的水下运载设备而言,神经动力学反步滑模控制器能够较好地实现航迹跟踪,并有效克服传统反步控制器速度跳变的问题。
In order to realize the tracking control of tethered underwater vehicle, this paper designs kinetmatics backstepping controller and dynamics sliding mode controller for tethered underwater vehicle. Bio-inspired neural dynamic model is introduced to smooth the output speed jumping generating by backstepping controller, because of a larger tracking error. Meanwhile the simulation of broken line path tracking is carried out. And the impact on tracking effect by umbilical cable and current and is analyzed. The results indicate that the path tracking error of the designed controller is small, and the tracking speed change is smooth at the initial stage and at the inflection point of the fold line path; the umbilical cable makes the tracking effect worse. For the underwater vehicle with umbilical cable, the neural dynamic back-stepping sliding mode controller is able to achieve tethered underwater vehicle’s trajectory tracking well and overcome the problem of speed jumping of traditional backstepping controller.
2020,42(1): 88-94 收稿日期:2018-11-20
DOI:10.3404/j.issn.1672-7649.2020.01.018
分类号:U661.33
基金项目:国家重点基础研究发展计划项目(2014CB046804); 教育部财政部重大科研专项(GKZY010004)
作者简介:魏斯行(1995-),男,硕士研究生,研究方向为船舶水动力性能优化和运动控制。
参考文献:
[1] ABLOW C M, SCHECHTER S. Numerical simulation of undersea cable dynamics[J]. Ocean Engineering, 1983, 10(6):443-457
[2] CHAI Y. T., VARYANI K. S., BARLTROP N. D. P. Three-dimensional Lump-Mass formulation of a catenary riser with bending, torsion and irregular seabed interaction effect[J]. Ocean Engineering, 2002, 29(12):1503-1525
[3] SUN Y., LEONARD J. W., CHIOU R. B. Simulation of unsteady oceanic cable deployment by direct integration with suppression[J]. Ocean Engineering, 1994, 21(3):243-256
[4] Antonelli Gianluca. Adaptive/integral actions for 6-DOF control of AUVs[C]. Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006:3214-3219.
[5] TANG Zhijie, HE Qingbo, WANG Shua, et al. An improved generalized predictive control for AUV yaw[C]. 2ndInternational Conference on Mechatronics and Intelligent Materials, 2012:1709-1713.
[6] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京:清华大学出版社, 2005:2-3, 236-276.
[7] 吴宝举, 李硕, 王晓辉. 自治水下机器人自适应滑膜控制[J]. 机械设计与制造, 2010, 7:142-144
[8] KHAN I, BHATTI A I, KHAN Q, et al. Sliding mode control of lateral dynamics of an AUV[C]//Proceedings of 20129th International Bhurban Conference on Applied Sciences and Technology, 2012:27-31.
[9] HASSAN K K. Nonlinear systems[M]. Publishing House of Electronics Industry, 2012:589-603.
[10] 贾鹤鸣. 基于反步法的欠驱动UUV空间目标跟踪非线性控制方法研究[D]. 哈尔滨:哈尔滨工程大学, 2012. JIA Heming. Study of nonlinear control method of underactuated UUV Target tracking based on backstepping method[D]. Harbin:Harbin Engineering University, 2012.
[11] WU Jiaming. Simulation of a two-part underwater towed system[D]. Pokfulam, Hong Kong:The University of Hong Kong. 1998.
[12] 李霄霄, 马宁, 刘晗, 等. 脐带缆在潜器下放过程中的运动建模与仿真[J]. 海洋工程, 2016, 34(2):47-55
[13] FOSSEN T I. Marine control systems:guidance, navigation and control of ships, rigs and underwater vehicles[M]. Marine Cybernetics, 2002:15-109.
[14] SUN B, ZHU D, DING F, et al. A novel tracking control approach for unmanned underwater vehicles based on bio-inspired neurodynamics[J]. Journal of Marine Science and Technology, 2013, 18(1):63-74
[15] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 1952, 117(4):500-544
[16] GROSSBERG S. Nonlinear neural networks:Principles, mechanisms, and architectures[J]. Neural Networks, 1988, 1(1):17-61
[17] FANG M C, HOU C S, LUO J H. On the motions of the underwater remotely operated vehicle with the umbilical cable effect[J]. OCEAN ENGINEERING-OXFORD-, 2007, 34:1275-1289