作为一种利用流体冲击叶轮转动的动力机械结构体,涡轮机已被广泛用于发电、航空、航海等领域,传统涡轮机具有结构复杂、动力装置间容易产生泄漏等问题,使得特斯拉涡轮机因结构简单、制造公差要求相对较低、密封性能突出等特点重新回到研究者的视野,但是目前特斯拉涡轮机由于能量转换效率相对较低,还无法正式投入生产实践。本文综述了特斯拉涡轮机的发展现状,列举了国内外研究者在各个领域进行的特斯拉涡轮机取代传统涡轮机的探索性实验,总结了逐步完善的研究方法理论体系,综述了特斯拉涡轮机研究需要解决的关键问题,对特斯拉涡轮机的进一步研究提出了建议。
As a kind of dynamic mechanical structure which utilizes fluid to impact impeller rotation, turbine has been widely used in power generation, aviation, navigation and other fields. The traditional turbine has the problems of complex structure, leakage between power devices and so on, which makes Tesla turbine simple in structure, relatively low manufacturing tolerance requirements and sealing performance. These features can be highlighted and returned to the view of researchers, but the Tesla turbine is still unable to be put into production due to its relatively low energy conversion efficiency.
2020,42(2): 12-19 收稿日期:2018-10-25
DOI:10.3404/j.issn.1672-7649.2020.02.002
分类号:TK14
基金项目:工信部高技术船舶科研项目(工信部装函[2017]614号);国家自然科学基金资助项目(51422507)
作者简介:彭迪(1995-),男,硕士研究生,主要研究方向为船舶动力系统性能优化
参考文献:
[1] KAUFUI V WONG, OMAR De Leon. Applications of nanofluids:current and future[J]. Advances in Mechanical Engineering, 2010, 2010(2):519659-519670
[2] AGRAWAL S K, Gardner G, Pledgie S. Design and fabrication of an active gravity balanced planar mechanism using auxiliary parallelograms[J]. Journal of Mechanical Design, 2001, 123(4):525-528
[3] STEIDEL R, WEISS H. Performance test of a bladeless turbine for geothermal applications:UCID-17068[R]. Lawrence Livermore Laboratory, 1974.
[4] ALOIS P, ROLF V, VOLKER M K. Performance analysis of a miniature turbine generator for intracorporeal energy harvesting[J]. ASME, 2014, 136(8):81101-81110
[5] LAMPART P, KOSOWSKI K, PIWOWARSKI M, et al. Design analysis of tesla micro-turbine operating on a low-boiling medium[J]. Polish Maritime Research, 2009, 16(Special):28-33
[6] CAREY V P. Assessment of Tesla turbine performance for small scale solar rankine combined heat and power systems[J]. Journal of Engineering for Gas turbines and Power, 2010, 132(12):122301-122309
[7] CHOON T W, RAHMAN A A, JER F S, et al. Optimization of Tesla turbine using computational fluid dynamics approach, 12442761[R]. Langkawi:Industrial Electronics and Applications (ISIEA), IEEE Symposium, 2011.
[8] HASAN, ALI M. Investigating the possibility of using a tesla turbine as a drive unit for an automotive air-conditioning compressor using CFD modeling[J]. ASHRAE Transactions, 2016, 122(1):146-158
[9] SONG Jian, GU Chun-wei, LI Xue-song. Performance estimation of Tesla turbine applied in small scale organic rankine cycle (ORC) system[J]. Applied Thermal Engineering, 2017, 110(1):318-326
[10] DAMODHAR R, MRUTHYUNJAYA K N, NAVEEN, et al. Design and fabrication of portable water turbine[J]. International Research Journal of Engineering and Technology, 2017, 4(6):56-72
[11] MURATA S, YUKATA M, YOSHIYUKI. A study on a disk friction pump[N], Bulletin of the Japanese Society of Mechanical Engineers, 1976-02-25(354).
[12] HARWOOD P. Further investigation into Tesla turbomachinery[R]. Senior Project Report, Mechanical Engineering Department, University of Newcastle, United Kingdom, 2008.
[13] DEAM R T, LEMMA E, MACE B, et al. On scaling down turbines to millimeter size[J]. Journal of Engineering for Gas Turbines & Power, 2008, 130(5):819-825
[14] TALLURI L, FIASCHI D, NERI G, at el. Design and optimization of a Tesla turbine for ORC applications[J]. Applied Energy, 2018, 226:300-319
[15] HOYA G P, GUHA A. The design of a test rig and study of the performance and efficiency of a Tesla disc turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2009, 223(4):451-465
[16] COUTO H S, DUARTE J B F, BASTOS-NETTO D. The Tesla turbine revisited[R]. Sochi:8thAsia-Pacific International Symposium on Combustion and Energy Utilization, 2006.
[17] GUHA A, SENGUPTA S. A non-dimensional study of the flow through co-rotating discs and performance optimization of a Tesla disc turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2017, 231(8):721-738
[18] ENGIN T, ÖZDEMIR M, ÇEMECI S. Design, testing and two-dimensional flow modeling of a multiple-disk fan[J]. Experimental Thermal & Fluid Science, 2009, 33(8):1180-1187
[19] SENGUPTA S, GUHA A. Analytical and computational solutions for three-dimensional flow-field and relative pathlines for the rotating flow in a Tesla disc turbine[J]. Computers & Fluids, 2013, 88(11):344-353
[20] NECKEL A L, GODINHO M. Influence of geometry on the efficiency of convergent-divergent nozzles applied to Tesla turbines[J]. Experimental Thermal & Fluid Science, 2015, 62(62):131-140
[21] SENGUPTA S, GUHA A. Flow of a nanofluid in the microspacing within co-rotating discs of a Tesla turbine[J]. Applied Mathematical Modelling, 2016, 40(1):285-499
[22] MATSCH L, RICE W. An asymptotic solution for laminar flow of an incompressible fluid between rotating disks[J]. Journal of Applied Mechanics, 1968, 35(2):155-159
[23] RICE W. An analytical and experimental investigation of multiple-disk turbines[J]. Journal of Engineering for Gas Turbines & Powe, 2014, 87(1):29-36
[24] SCHROEDER H B. An investigation of viscosity force in air by means of a viscosity turbine[R]. BAE Thesis, Rensselaer Polytechnic Institute, 1950.
[25] RICE W. Tesla turbomachinery[M]. Handbook of Turbomachinery, 2003:861-874
[26] GREGORY N, STUART J T, WALKER W S. On the stability of three dimensional boundary layers with application to the flow due to a rotating disk[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 1955, 248(943):155-199
[27] FALLER A J, KAYLOR R E. Numerical study of the instability of the laminar ekman boundary layer[J]. Journal of the Atmospheric Sciences, 1966, 23(4):466-480
[28] SAVAS Ö. On flow visualization using reflective flakes[J]. Journal of Fluid Mechanics, 1985, 152(152):235-248
[29] SAVAS Ö. Stability of bödewadt flow[J]. Journal of Fluid Mechanics, 1987, 183(183):77-94
[30] PIKHTOV S V, Smirnov E M. Boundary layer stability on a rotating disk with corotation of the surrounding fluid[J]. Fluid Dynamics, 1992, 27(5):657-663
[31] SCHOUVEILER L, GAL P L, CHAUVE M P. Stability of a traveling roll system in a rotating disk flow[J]. Physics of Fluids, 1998, 10(11):2695-2697
[32] SERRE E, CRESPO DAE, BONTOUX P. Annular and spiral patterns in flows between rotating and stationary discs[J]. Journal of Fluid Mechanics, 2001, 434(434):65-100
[33] SANK'OV P I, SMIRNOV E M. Bifurcation and transition to turbulence in the gap between rotating and stationary parallel disks[J]. Fluid Dynamics, 1984, 19(5):695-703
[34] GAUTHIER G. GONDRET P, MOISY F, et al Instabilities in the flow between co-and counter-rotating disks[J]. Journal of Fluid Mechanics, 2002, 473(473):1-21
[35] WU P S. Evaluation of analytical models for multiple-disk pump rotor calculations[D]. M.S. Thesis, Department of Mechanical and Aerospace Engineering, Arizona State University, 1986.
[36] NENDL D. Dreidimensionale laminare instabilitäten bei ebenen wänden[J]. Z. Angew. Math. Mech, 1973, 56(56):211-213
[37] NENDL D. Reibungsturbine[J]. VDI-Berichte, 1973, 193(193):287-293
[38] KRISHNAN V G, IQBAL Z, MAHARBIZ M M. A micro Tesla turbine for power generation from low pressure heads and evaporation driven flows[C]. China:The 16th International Conference on Solid-State Sensors, Actuators and Microsystems, 2011:1851-1854.
[39] SONG Jian, REN Xiao-dong, LI Xuesong, et al. One-Dimensional model analysis and performance assessment of Tesla turbine[J]. Applied Thermal Engineering, 2018, 134:546-554
[40] GUHA A, SMILEY B. Experiment and analysis for an improved design of the inlet and nozzle in Tesla disc turbines[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power & Energy, 2010, 224(2):261-277