随着风力发电技术日趋成熟,我国沿海风电场的装机容量和规模也越来越大。近年来,作为风电场建设配套作业的海缆船越来越受到业界关注。为了满足海缆埋设和维修接续作业的需要,现代海缆船普遍都配置了定位系统。本文以某5 000 t海缆船为例,通过对高流速海况条件下的环境力计算分析,以及沿设定路由布缆和定点维修接续作业的特殊要求,介绍了该船配置的8点锚泊定位系统、动力定位DP-1系统,以及牵引绞车系统的设计。通过计算在不同海况条件下的几种定位系统的定位能力,了解海缆船的定位系统应根据不同作业需求以及海况条件,综合考虑造价预算、工程周期等,选择合理可行的形式。与常规远洋海缆船不同,通过采用横向布缆作业形式,可以有效降低定位系统配置。甲板上配置的柴油机直接驱动悬挂式全回转舵桨的动力定位方案,为海洋工程作业船增加动力定位系统的改造提供新的解决方案。
With the maturity of wind power generation technology, the installed capacity and scale of coastal wind farms in China are also growing. In recent years, as a complementary operation of wind farm construction, cable-laying vessels have attracted more and more attention of the industry. In order to meet the needs of submarine cable laying and maintenance, modern cable-laying vessels are generally equipped with positioning systems. Taking a 5000t cable-laying vessel as an example, this paper introduces the 8-point mooring positioning system, dynamic positioning DP-1 system and the design of traction winch system by calculating and analyzing the environmental forces under high-speed sea conditions and the special requirements of route laying and fix-point maintenance. By calculating the positioning capability of several positioning systems under different sea conditions, readers can understand that the positioning system of cable-laying vessels should select reasonable and feasible forms according to different operational requirements and sea conditions, taking into account the cost budget, project cycle and so on. Unlike the conventional ocean-going cable-laying vessel, the configuration of positioning system can be effectively reduced by using lateral cable laying operation. Through the dynamic positioning scheme of diesel engine directly driving suspended full rotary rudder propeller on deck, a new solution is provided for the modification of adding dynamic positioning system to ocean engineering operation ship.
2020,42(2): 170-175 收稿日期:2019-07-17
DOI:10.3404/j.issn.1672-7649.2020.02.033
分类号:U674
作者简介:毛建辉(1977-),男,高级工程师,研究方向为船舶及海洋工程总体设计
参考文献:
[1] 吴爱国, 袁舟龙, 公言强, 等. 国内海底电缆深埋敷设施工技术综述[J]. 浙江电力, 2015(3):57-62
[2] 施小成, 王元惠. 船舶动力定位海洋环境的建模与仿真[J]. 计算机仿真, 2006, 23(1):237-239
[3] PARXIS动力定位能力报告
[4] CARBONO AJJ, MENEZESIFM, FEERNL, et al.Mooring pattern optimization using genetic algorithms[C]//6th World Con-gresses of Structural and Multidisciplinary Optimization, May 30-June 3, 2005, Rio de Janeiro, Brazil. 2005:1-9
[5] SHAfiEEFAR M, REZVANIA. Mooring optimization of floating platforms using a genetic algorithm[J]. Ocean Engineering, 2007, 34:1413-1421
[6] 殷俊俊, 潘方豪, 等. 某型海底动力电缆敷设船锚泊系统设计[J]. 船舶, 2018(6):138-145
[7] 王宗义, 等. 船舶动力定位的数学模型和滤波方法[J]. 哈尔滨工程大学学报, 2002, 23(4):24-28
[8] SORENSEN A, SAGATUNA S, FOSSEN T. Design of a dynamic positioning system using model-based control[J]. Control Engineering Practice, 1996, 4(3):359-368
[9] FOSSEN T I, PEREZ, T. Kalman filtering for positioning and heading control of ships and offshore rigs[J]. IEEE Control Systems Magazine, 2009, 29(6):32-46
[10] 朱海洋. 船舶动力定位能力分析系统研究[D]. 镇江:江苏科技大学, 2017年
[11] 孙俊, 张裕芳, 易宏, 等. 2000t海缆作业船推进系统论证研究[J]. 船舶工程, 2009(6):24-27
[12] SØRENSEN A J. A survey of dynamic positioning control systems[J]. Annual Reviews in Control, 2011, 35:123-136