自主式水下航行器的耐压和密封是非常关键的两方面,基于SolidWorks软件对324型AUV耐压舱体进行了设计与仿真校核。综合考虑薄膜理论和不连续效应,根据NSGA-Ⅱ算法实现多目标优化,确定出直舱和封头的基本尺寸,利用美国海军试验水槽公式和稳定条件进行初步验证,以保证强度和稳定性。根据得出的几何尺寸在SolidWorks里完成三维建模,并在Simulation模块中完成数值模拟仿真,最终对舱体进行实际耐压试验,将结果和理论计算、软件仿真进行对比。针对直舱段舱体不同尺寸和材料进行了三维建模和数值仿真,得出相应结论。
Pressure endurance and seal of autonomous underwater vehicle are two key aspects. Based on SolidWorks software, 324 AUV pressure hull is designed and simulated. Incorporating the membrane theory and discontinuous effect, according to the NSGA-Ⅱ multi-objective optimization algorithm implementation, to determine the basic dimensions of the straight tank and head. Use tests the flume formula of USA navy and the stability condition for the preliminary verification, to ensure the strength and stability. According to the obtained geometric dimensions, three dimensional modeling was completed in SolidWorks. Numerical simulation was completed in the simulation module. Finally, the actual pressure test was carried out on the hull. The results were compared with theoretical calculation and software simulation. Three dimensional modeling and numerical simulation for different sizes and materials of straight section hull are carried out and get some conclusions.
2020,42(4): 102-106 收稿日期:2019-03-15
DOI:10.3404/j.issn.1672-7649.2020.04.020
分类号:U663
基金项目:国家重点研发计划项目(2016YFC0301404);国家自然科学基金资助项目(51379198)
作者简介:刘继鑫(1994-),男,硕士研究生,研究方向为装备制造与控制、水下机器人设计与优化
参考文献:
[1] 陈永华, 李思忍, 龚德俊, 等. 一种小型水密耐压舱体的设计与制作[J]. 压力容器, 2007, 24(9): 25–28, 61
CHEN Yong-hua, LI Si-ren, GONG De-jun, et al. Design and development of a watertight and compressive cabin[J]. Pressure Vessel Technology, 2007, 24(9): 25–28, 61
[2] ENOMA N, ZINGONI A. Analytical formulation and numerical modelling for multi-shell toroidal pressure vessels[J/OL]. http://dx.doi.org/10.1016/j.compstruc.2017.07.013, 2017.
[3] ZINGONI A, MOKHOTHU B, ENOMA N. A theoretical formulation for the stress analysis of multi-segmented spherical shells for high-volume liquid containment[J]. Engineering Structures, 2015, 87: 21–31
[4] JIAMMEEPREECHA W, CHUCHEEPSAKUL S. Nonlinear static analysis of an underwater elastic semi-toroidal shell[J]. Thin-Walled Structures, 2017, 116: 12–18
[5] 苗怡然, 高良田, 梁旭, 等. 水下航行器耐压壳体参数化设计优化[J]. 大连海试大学学报, 2017, 43(2): 33–38
MIAO Yi-ran, GAO Liang-tian, LIANG Xu, et al. Parametric optimization design of pressure hull for automatic underwater vehicle[J]. Journal of Dalian Maritime University, 2017, 43(2): 33–38
[6] 乔钢, 梅成, 周锋, 等. 海洋水声通信节点的耐压舱体设计及多重应力分析[J]. 海洋技术学报, 2014, 33(1): 84–88
QIAO Gang, MEI Cheng, ZHOU Feng, et al. Pressure-proof cabin design and multiple analysis of stress for ocean underwater acoustic communication nodes[J]. Journal of Ocean Technology, 2014, 33(1): 84–88
[7] 赵罘, 杨晓晋, 赵楠. SolidWorks2016机械设计从入门到精通[M]. 北京: 人民邮电出版社, 2016: 432-442.
[8] 鲁鹏, 耿文豹. 海洋探测型AUV壳体设计与强度校核[J]. 舰船科学技术, 2015, 37(5): 119–121
LU Peng, GENG Wen-bao. Design and strength check of pressure hull of ocean exploration AUV[J]. Ship Science and Technology, 2015, 37(5): 119–121
[9] 鲍维俊. 浅海水下机器人耐压壳体的优化设计[J]. 山东工业技术, 2015(24): 227–228
BAO Wei-jun. Optimal design of pressure hull for shallow sea underwater robot[J]. Shandong Industrial Technology, 2015(24): 227–228
[10] 肖文刚, 王嵘, 乔仁海. 碳纤维复合材料圆筒受外压结构分析[J]. 玻璃钢/复合材料, 2009(4): 11–13
XIAO Wen-gang, WANG Rong, QIAO Ren-hai. Study of the CFRP cylinder under external hydro static pressure[J]. Fiber Reinforced Plastics/Composites, 2009(4): 11–13
[11] 刘宁, 孔维轩, 张强, 等. 水静压力对水密耐压电缆体积变化的影响[J]. 舰船科学技术, 2016, 38(S1): 90–92
LIU Ning, KONG Wei-xuan, ZHANG Qiang, et al. The influence of water pressure on volume change rate of watertight cable[J]. Ship Science and Technology, 2016, 38(S1): 90–92
[12] 张强, 刘宁, 孔维轩. 海洋用耐压壳体设备水下变形及渗漏检测方法探讨[J]. 舰船科学技术, 2017, 39(12): 119–121
ZHANG Qiang, LIU Ning, KONG Wei-xuan. Discussion on underwater deformation and leakage detection method for seismic shell equipment[J]. Ship Science and Technology, 2017, 39(12): 119–121