针对传统的Paris裂纹扩展模型在可靠性研究中不能考虑小裂纹扩展过程的问题,本文基于改进McEvily裂纹扩展模型,建立疲劳可靠性的极限状态计算方程,采用一次二阶矩验算点法对可靠度指标及其参数敏感性进行计算分析。通过与基于Paris裂纹扩展模型的可靠性结果对比表明:改进McEvily裂纹扩展模型下的可靠度指标为4.17,在Paris裂纹扩展模型下的可靠度指标为4.08,Paris模型只考虑了裂纹稳定扩展的过程,其可靠性计算结果更为保守;通过参数灵敏度分析得知,不确定变量中的材料参数m、初始裂纹尺寸a0、临界裂纹尺寸ac对可靠度指标有较大程度的影响。小裂纹扩展阶段的主要影响参数即裂纹闭合水平k,其变异系数对失效概率的影响较小但系数达到0.16时失效速率有进一步增长趋势。
Consideing traditional Paris crack propagation model in the study of reliability cannot consider the matter of small crack propagation process, in this paper, based on the improved McEvily crack propagation model of fatigue reliability calculation of the limit state equation is established, using a second-order moment checking point method of reliability index and the parameter sensitivity analysis, calculated, with the Paris based crack extension model show that the results of reliability of The reliability index of the improved McEvily crack growth model is 4.17, and that of the Paris crack growth model is 4.08. The model only considers the process of stable crack growth, and its reliability calculation results are more conservative. Through parameter sensitivity analysis, it is known that material parameters m, initial crack size and critical crack size in the uncertain variables have a great influence on the reliability index. Small crack growth stage of the main parameters influencing the level of crack closure k, but has little effect on the variation coefficient of failure probability coefficient reaches 0.16 a further increase of failure rate trend.
2021,43(1): 102-107 收稿日期:2019-12-17
DOI:10.3404/j.issn.1672-7649.2021.01.018
分类号:U664.1
基金项目:国家重点研发计划项目(2016YFC0300600);国家自然科学基金资助项目(51709134,51879125);江苏省自然科学基金资助项目(BK20160559);江苏省“六大人才高峰”高层次人才资助项目(No.2018-KTHY-033)
作者简介:王珂(1979-),女,博士,副教授,研究方向为船舶与海洋结构物安全性
参考文献:
[1] WIRSCHING P H. Application of reliability methods to fatigue analysis and design [M]. 2006.
[2] X.P.HUANG W C C. A general constitutive relation for fatigue crack growth analysis of metal structures [J]. 金属学报(英文版), 16(5): 342−54.
[3] CUI, W-C. A feasible study of fatigue life prediction for marine structures based on crack propagation analysis [J]. Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritime Environment, 217(1): 11−23.
[4] NEWMAN J A, PIASCIK R S. Interactions of plasticity and oxide crack closure mechanisms near the fatigue crack growth threshold [J]. International Journal of Fatigue, 26(9): 923−7.
[5] ISHIHARA S, MCEVILY A J. Analysis of short fatigue crack growth in cast aluminum alloys [J]. International Journal of Fatigue, 24(11): 1169−74.
[6] 李向阳, 崔维成, 张文明. 钛合金载人球壳的疲劳寿命可靠性分析[J]. 船舶力学, 2006, 10(2): 82-6
[7] 李向阳, 崔维成, 张文明, 等. 一种改进的疲劳裂纹扩展表达式[J]. 船舶力学, 2006, 10(1): 54-61
[8] XIANG-YANG L I, CUI W C, ZHANG W M, et al. A modified constitutive relation for fatigue crack growth[J]. Journal of Ship Mechanics, 2006, 10(1): 54-61
[9] 王一飞, 王燕舞, 吴晓源, 等. 有效应力强度因子范围门槛值与载荷比关系的研究[J]. 船舶力学, 2008, 12(3): 440-53
[10] ISHIHARA S, MCEVILY A J. On the early initiation of fatigue cracks in the high cycle regime [C]. Proceedings of the 12th International Conference on Fracture, ICF12, F, 2009.
[11] 李旭东, 张连峰, 朱武峰, 等. 铝合金高温低周疲劳裂纹扩展可靠性评估[J]. 装备环境工程, 2013(5): 134-8
[12] 罗广恩, 崔维成. 基于改进McEvily模型的深海结构表面裂纹疲劳扩展模拟 [J]. 船舶力学, 2013(6): 645−55.
[13] 许斐然罗, 沈言. 基于改进McEvily模型的结构压-压疲劳寿命预测方法[J]. 舰船科学技术, 2018, 40(23): 61-67
[14] 康健左, 师小红. 康健, 等 McEvily公式的改进及其在疲劳扩展寿命评估中的应用[J]. 军械工程学院学报, 2007(1): 35-38