传统的频域稳态计算无法了解轴系扭转振动瞬态特性,以某柴油机双机并车装置为研究对象,基于集总参数法建立扭振计算分析模型,通过与经典模型对比,验证模型的正确性。在Matlab分析平台上,使用NewMark-β法,进行时域扭转振动分析。针对并车过程中两柴油机相位差的随机性,得到并车过程两柴油机最不利的相位差角,以及曲轴应力随并车产生的相位差、柴油机转速的变化规律。借用BV043-85冲击分析标准,探讨并车过程瞬态冲击对轴系的影响,以及冲击载荷在轴系中的传递规律。结果表明,瞬态响应计算方法可为柴油机双机并车推进装置的振动分析及故障诊断提供理论支撑。
The traditional frequency domain steady-state calculation can not understand the transient characteristics of the torsional vibration of the shafting. A combined diesel and diesel parallel device is taken as the research object. Based on the lumped parameter method, the torsional vibration calculation model is established. Compared with the classic model, the correctness of the model is verified. On the Matlab analysis platform, the time-domain torsional vibration analysis is performed by using the NewMark-β method. Based on the randomness of the phase difference between the two diesel engines during the parallel process, the most unfavorable phase difference angle of combined diesel and diesel in the parallel process, and the phase difference between the crankshaft stress and the diesel engine speed are obtained. The BV043-85 impact analysis standard is used to discuss the influence of the transient impact of the parallel process on the shafting and the transmission law of the impact load in the shafting. The transient response calculation method can provide theoretical support for the vibration analysis and fault diagnosis of combined diesel and diesel parallel propulsion device.
2021,43(1): 112-116,121 收稿日期:2019-08-30
DOI:10.3404/j.issn.1672-7649.2021.01.020
分类号:U664.2
基金项目:国家自然科学基金资助项目(51839005)
作者简介:范君浩(1995-),男,硕士研究生,研究领域为船舶动力装置性能分析及振动噪声控制
参考文献:
[1] 王德山, 竺华君, 苏善旺. 船用柴油机的双机并车[J]. 船舶, 2010, 21(5): 28-32
[2] 吴杰长, 陈国钧, 安玉昌, 等. 柴油机并车控制器试验平台及监测分析系统研究[J]. 内燃机学报, 2002, 20(3)
[3] 吴帅, 吴文伟, 熊晨熙. 冰载荷下柴油机推进轴系扭振的数值方法研究[J]. 舰船科学技术, 2018, 40(15): 89-95
[4] 杨红军, 车驰东, 张维竞, 等. 基于威尔逊θ法的船舶推进轴系扭转振动计算[J]. 船舶工程, 2014(4): 46-49
[5] BARRO R D, EOM K T, LEE D C. Transient torsional vibration response due to ice impact torque excitation on marine diesel engine propulsion shafting[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2015, 25(5): 321-328
[6] 廖鹏飞, 周瑞平, 李江. 冰区船舶电力推进轴系瞬态扭振计算研究[J]. 推进技术, 2018, 39(8): 215-222
[7] 赵进刚, 刘刚, 王伟吉. 船舶复杂轴系扭转振动计算研究[J]. 中国舰船研究, 2010(6): 65-69
[8] 陈之炎. 船舶推进轴系振动[M]. 北京: 人民交通出版社, 1987.
[9] 陈虞涛, 曾凡明, 陈国钧, 等. 船舶并车推进装置负荷均衡控制策略研究[J]. 舰船科学技术, 2008, 30(5): 24-27
[10] CHEN T, CHEN H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems[J]. IEEE Transactions on Neural Networks, 1995, 6(4): 911-917
[11] 汪玉, 计晨, 杜俭业, 等. 舰船动力轴系冲击响应性能分析[J]. 振动与冲击, 2011(5): 164-168
[12] 黄文超. 柴油机双机并车装置控制系统研究[D]. 上海: 上海交通大学, 2010.
[13] KRAUSE R, WALLOTH M. Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme ☆[J]. Applied Numerical Mathematics, 2012, 62(10): 1393-1410
[14] 陈大荣. 船舶内燃机设计[M]. 北京: 国防工业出版社, 1995.
[15] 朱俊飞, 周瑞平, 胡义, 等. 带齿轮副船舶推进轴系动态响应仿真研究[J]. 振动与冲击, 2013, 32(9): 100-104