运用非线性显式有限元的方法,分析船-码头碰撞的全过程,探讨碰撞部位对船舶动力特性的影响规律,揭示船-码头碰撞过程中船体构件的受损情况,预报碰撞力及变性能的时程变化规律。研究表明:船舶与码头发生首碰、尾碰时,船舶主要受力构件、受力特点明显不同, 主要受力构件的应力分布特点是分布面积小,维持时间长,应力数值大;次要受力构件的应力分布特点是分布面积大,维持时间较短,应力数值小性。船舶与码头碰撞过程中伴有船舶的凹陷及船体外板的运动,在实际工程中应当给予足够的重视。
In this paper, the nonlinear explicit finite element method is adopted to analyze the whole process of ship-to-dock collision, to explore the impact law of collision position on ship's dynamic characteristics, to reveal the damage of hull components during ship-to-dock collision, and to predict the time-history variation law of collision force and variable performance. The research show that when the ship and the dock meet at the head and stern of the ship, the main stress components and stress characteristics of the ship are obviously different. And the stress distribution of the main stressed components is characterized by small distribution area, long maintenance time and large stress value, the stress distribution characteristics of secondary stressed members are as follows: large distribution area, short maintenance time, small stress value, depression of ship and movement of hull plate during collision between ship and wharf which enough attention should be paid in practical projects.
2021,43(3): 29-32 收稿日期:2020-01-13
DOI:10.3404/j.issn.1672-7649.2021.03.006
分类号:U698.5
基金项目:国家自然科学基金资助项目(51479015);重庆市技术创新与应用发展专项项目(cstc2019jscx-msxmX0302);重庆市教育委员会科学技术研究项目(KJQN201900735);鲁渝科技协作计划项目(cstc2019jscx-lyjsAX0008);重庆市技术创新与应用示范项目(cstc2018jscx-msybX0233)
作者简介:袁培银(1987-),男,博士研究生,副教授,主要从事船舶与海洋结构物性能研究工作。
参考文献:
[1] 候建. 全船有限元强度分析及碰撞仿真[D]. 大连: 大连理工大学, 2012.
[2] 郭君. 船舶碰撞过程中带板梁结构剪切破坏机理初探[J]. 振动与冲击, 2011, 30(8): 61–66
[3] 赵南, 刘俊杰, 李政杰, 胡嘉骏. 补给作业船舷侧碰撞损伤环境研究[J]. 船舶力学, 2015, 19(8): 950–957
[4] 李良伟, 杜俭业. 船舶模型水池碰撞试验研究[J]. 舰船科学技术, 2018, 40(23): 64–67
[5] 胡志强, 崔维成. 船舶碰撞机理与耐撞性结构设计研究综述[J]. 船舶力学, 2005(2): 131–142
[6] MINORSKY V U. Analysis of ship collision with reference to protection of nuclear power ships[J]. Journal of Ship Research, 1959, 3(2)
[7] KITAMURA O. FEM approach to the simulation of collision and grounding damage[J]. Marine Structures, 2002, 15(5): 403–428
[8] BROWN A J. Collision scenarios and probabilistic collision damage[J]. Ocean Engineering International, 2002, 15(4): 335–364
[9] BROWN A J. Probabilistic method for prediction ship collision damage[J]. Ocean Engineering International, 2002, 6: 54–55
[10] CONSOLAZIO G R. Nonlinear analysis of barge crush behavior and its relationship to impact resistant bridge design[J]. Computer & Structure, 2003(81): 547–557
[11] 白金泽. LS-DYNA理论基础与实例分析[M]. 北京: 科学出版社, 2005.
[12] 赵海鸥. LS-DYNA动力分析指南[M]. 北京: 兵器工业出版社, 2003.
[13] 张娅. 船舶碰撞过程中的附加质量研究[D]. 武汉: 武汉理工大学, 2016.
[14] 武橦. 基于LS-DYNA的船舶-冰层碰撞数值研究[D]. 大连: 大连理工大学, 2018.
[15] 袁培银, 刘俊良, 雷林, 等. 船舶与海洋平台碰撞的动力响应研究[J]. 舰船科学技术, 2018, 40(3): 27–32