在船舶与海洋平台中,空调管路系统噪声是舱室噪声的主要来源之一,风机与管路元件流动噪声通过管路系统与管口传递至舱室,风机振动通过管路传递至甲板引起结构辐射噪声。本文开展空调通风系统噪声源及其传递路径分析,在掌握主要影响因素与规律的基础上开展消声布风器、微孔消声器与管路弹性吊架等减振降噪元器件的设计与仿真分析,取得了优于传统元件的降噪效果,为船舶空调管路系统及舱室噪声控制提供技术支撑。
On ship and offshore platform, the noise of air-conditioning system is one of the main sources of cabin noise.The flow-noise of fan and pipeline elements is transmitted to cabin through pipeline and outlet.And vibration of fan is transmitted to deck through pipeline, which causes structural radiation noise.This paper carries out the analysis of noise source and transmission path of air conditon and air conditioning and vetilation system.On the basis of mastering the main influencing factors and rules, the desigh and simulation analysis of noise reduction components such as silencing air distributor, pipeline muffler and elastic hanger are carried out.The noise reduction effection of these components is better than that of traditional ones, which provides technical support for noise control of ship air conditioning pipeline system and cabin.
2021,43(3): 60-66 收稿日期:2020-03-27
DOI:10.3404/j.issn.1672-7649.2021.03.013
分类号:TB53
基金项目:工信部高技术船舶科研项目(2017[614],2016[24],2016[546])
作者简介:黄伟稀(1986-),男,高级工程师。研究方向为船舶振动噪声控制
参考文献:
[1] 马大猷, 等. 噪声与振动控制工程手册[M]. 北京: 机械工业出版社. 2002.
[2] ASHRAE. ASHRAE Handbook-HVAC Application[M]. 2011.
[3] 日本空调设备噪声研究协会. 空调设备消声设计[M]. 1986.
[4] 丁亮, 等. 一种顶式布风器的优化设计[J]. 中国造船, 2012, 53(2): 180–183
[5] 李以通. 布风器形式对船舶居住舱室气流分布的影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[6] 秦晓. 舰船住舱气流组织数值研究[D]. 大连: 大连海事大学, 2015.
[7] 郭宝坤, 李慧子, 等. 船用布风器冬季工况射流流场模拟及试验研究[J]. 制冷与空调, 2016, 16(12): 26–30
[8] 徐春. 风口气流噪声特性的实验研究[J]. 噪声与振动控制, 2005, S1: 44–47
[9] 李晓明, 等. 一种双风温低噪声布风[J]. 中国实物新型专利. 2010.
[10] 丁亮, 等. 一种顶式布风器的优化设计[J]. 中国造船. 2012, 53(2): 180−183.
[11] 王正伟. 流体机械基础[M]. 北京: 清华大学出版社, 2006.
[12] 姚寿广, 肖民. 船舶动力装置[M]. 北京: 国防工业出版社, 2012.
[13] 谭仁臣. 船舶辅机与轴系[M]. 哈尔滨: 哈尔滨工程大学出版社, 2012.
[14] AHMAD Nourbakhsh. Turbopumps and Pumping Systems[M]. Springer-Verlag Berlin Heidelberg. 2008.
[15] MAK CM, YANG J. A prediction method for aerodynamic sound produced by closely spaced elements in air ducts[J]. Journal of Sound and Vibration, 1999, 229(3): 743–753
[16] MAK CM. Development of a prediction method for flow-generated noise produced by duct elements in ventilation systems[J]. Applied Acoustics, 2002, 63: 81–93
[17] MAK CM, JIA Wu. Flow noise from spoilers in, ducts[J]. J. Acoust. Soc. Am, 2009, 125(6): 3756–3765
[18] BAUER A B. Impedance theory and measurements on porous acoustic liners[J]. Journal of Aircraft. 1977, 14(8): 720–728.
[19] ALLAM. S, ABOM. M. Experimental characterization of acoustic liners with extended teaction[J]. The 14th AIAA/CEAS Conference 2008, p. 3074.
[20] SULLIVAN J W, CROCKER M J. Analysis of concentric-tube resonators having unpartioned cavities[J]. J. Acoust. Soc. Am. 1978, 64(1): 207–215.
[21] SULLIVAN J W.A method for modeling perforated tube muffler components[J]. I. Theory. J. Acoust. Soc. Am. 1979, 66(3): 772–778.
[22] SULLIVAN J W. A method for modeling perforated tube muffler components[J]. II. Applications. J. Acoust. Soc. Am. 1979, 66(3): 772–778.
[23] MUNJAL M L. Acoustics of ducts and mufflers[M]. New York: Wiley-Interscience, 1987.