本文根据无人水面艇(USV)回收自主水下机器人AUV需求,设计了一款V型拖曳装置(V型翼)。通过STAR-CCM+流体仿真分析软件,在航速3 kn情况下,采用空间拘束法求解了V型翼的部分水动力系数,建立了V型翼水动力模型,并进行运动稳定性分析。外场试验数据分析结果显示,稳定拖曳状态下,舵角和V型翼纵倾角具有响应关系,对其进行公式推导,将计算值与实测数据进行对比,两者吻合程度较好。
According to the recovery requirements for autonomous underwater vehicles (AUV) using unmanned surface vehicles (USV), a V-type towing device (V-shaped wing) is designed in this paper. First of all, part of the hydrodynamic coefficients of V-shaped wings were solved by the space captive motion method at the speed of 3kn based on the fluid simulation software STAR-CCM+, and the hydrodynamic model of V-shaped wing was established and the motion stability was also analyzed. Secondly, the lake test data shows that the rudder angle and V-shaped wings pitch angle have a response relationship under the condition of stable towing, and the formula is deduced. At last, the theoretical calculation value was compared with the measured data, and the result shows that they are in good agreement.
2021,43(3): 107-114 收稿日期:2020-02-21
DOI:10.3404/j.issn.1672-7649.2021.03.021
分类号:TH12
基金项目:十三五预研项目(3020605040302);预研联合基金资助项目(6141A01061601);中国科学院海洋信息技术创新研究院前沿基础研究项目(QYJC201913);机器人学国家重点实验室基金(Y91Z0904)
作者简介:唐东生(1994-),男,硕士研究生,从事水下机器人自主布放回收技术研究
参考文献:
[1] 李硕, 刘健, 徐会希, 等. 我国深海自主水下机器人的研究现状[J]. 中国科学: 信息科学, 2018, 48(9): 36–48
[2] 羊云石, 顾海东. AUV水下对接技术发展现状[J]. 声学与电子工程, 2013(2): 43–46
[3] Anonymous. Unmanned Systems Integrated Roadmap FY2013-2038[R]. Washington: Department of the Defense, 2013.
[4] 李坡, 张志雄, 赵希庆. 美海军无人作战平台现状及发展趋势分析[J]. 装备学院报, 2014, 25(3): 6–9
[5] 曹和云, 倪先胜, 何利勇, 等. 国外潜载UUV布放与回收技术研究综述[J]. 中国造船, 2014, 55(2): 200–208
[6] SARDA E I, DHANAK M R. A USV-Based Automated Launch and Recovery System for AUVs[J]. IEEE Journal of Oceanic Engineering, 2016: 1–19
[7] K. ZWOLAK et al. An unmanned seafloor mapping system: The concept of an AUV integrated with the newly designed USV SEA-KIT[C]. New York: IEEE, 2017: 1−6.
[8] NAKAMURA M, KAJIWARA H, KOTERAYAMA W. Development of an ROV operated both as towed and self-propulsive vehicle[J]. Ocean Engineering, 2001, 28(1): 1–43
[9] GU HT, MENG LS, TANG DS, et al. The Lake Trial about the Autonomous Recovery of the UUV by the USV Towed System[C]. New York: IEEE, 2019: 1−7.
[10] 高婷, 庞永杰, 王亚兴, 等. 水下航行器水动力系数计算方法[J]. 哈尔滨工程大学学报, 2019, 40(1): 178–184
[11] 施生达. 潜艇操纵性[M]. 北京:业出版社, 1995: 52−68, 149−169.
[12] 邓志刚. 水下机器人动力学模型参数辨识方法综述[J]. 上海海事大学学报, 2014, 35(2): 74–80
[13] 陈振纬, 姜勇, 黄豪彩, 等. 水下直升机运动稳定性分析[J]. 船舶力学, 2019, 23(2): 152–162
[14] 刘金夫, 王亚兴, 唐元贵, 等. 全海深ARV动力学建模及简化研究[J]. 海洋技术学报, 2019, 38(2): 24–32
[15] 王庆云, 庞永杰, 李伟坡, 等. 系列舵翼潜艇水动力系数数值计算及试验研究[J]. 舰船科学技术, 2015, 37(11): 25–30
[16] 张凤菊, 刘晓娟, 赵丽平, 等. 数据差异显著性检验[J]. 农机使用与维修, 2012(4): 51–52