聚氨酯夹层板(SPS)因其出色的力学性能、减振降噪特性等在船舶建造领域得到了广泛应用。以船舶轻量化、高性能设计为目标,以64000DWT散货船钢制舱口盖为替代目标,采用聚氨酯夹层板设计新型舱口盖结构,基于有限元软件Ansys Workbench开展SPS舱口盖结构振动特性分析,研究其模态振型、谐响应和随机振动。通过与钢制舱口盖振动特性的对比研究,论证了聚氨酯夹层板在船舶减重和结构减振方面的优势与前景。研究结果表明:SPS舱口盖设计方案,在实现整体减重12%的情况下,使谐响应振幅降低75%;在1σ区域内,使随机振动的位移、应力响应分别降低了63.4%和76.1%。研究结果可以为船舶结构轻量化设计、舒适性改善等提供参考。
As a substitute for traditional stiffened panels, Steel-Polyurethane-Steel sandwich structures are selected as preferred lightweight load-bearing structure in shipbuilding due to their high strength-to-weight ratio, excellent designable and easily molding. They can also serve as functional structures with excellent energy absorption, corrosion resistance property, vibration suppression and sound insulation properties. A new SPS hatch cover is designed to substitute the steel hatch cover of 64000DWT Bulk Cargo Carrier for lightweight. Then the modal shape, harmonic response and random vibration of SPS hatch cover structure are investigated with Ansys Workbench. The advantages and prospects of SPS used in shipbuilding for lightweight and structural vibration reduction are demonstrated by comparing with the vibration characteristics of the steel hatch cover. The results showed that using SPS instead of traditional steel hatch cover, the harmonic response amplitude of the structure is reduced by 75% under the condition of 12% weight reduction. In the 1σ region, the displacement and stress responses of the random vibration are reduced by 63.4% and 76.1% respectively. The results can provide reference for lightweight design and comfort improvement of ship structure.
2021,43(4): 78-81 收稿日期:2020-01-11
DOI:10.3404/j.issn.1672-7649.2021.04.016
分类号:U661.44
基金项目:国家自然科学青年基金资助项目(11702119,51109101);江苏省高校自然科学研究重大项目(17KJA580002)
作者简介:田阿利(1980-),女,副教授,主要从事新型船舶与海洋结构物设计与力学性能等研究
参考文献:
[1] 陈庆强, 张海华, 吴赞. 船体结构钢夹层板强度计算方法研究[J]. 中国造船, 2015, 56(2): 68-82
[2] 薛启超, 邹广平, 何建, 等. 聚氨酯弹性体隔板夹层结构的等效参数计算[J]. 复合材料学报, 2017, 34(3): 564-573
[3] 陈凯, 刘均, 张攀, 等. 低速碰撞载荷下钢制波纹夹层板动态响应研究[J]. 舰船科学技术, 2018, 40(1): 27-34
[4] Hongxu Wang, Karthik Ram RAMAKRISHNAN, Krishna SHANKAR. Experimental study of the medium velocity impact response of sandwich panels with different cores[J]. Materials and Design, 2016, 99: 68-82
[5] 沈超明, 叶仁传, 田阿利. 钢/聚氨酯夹层结构动态压缩力学性能与本构模型研究[J]. 振动与冲击, 2016, 35 (10): 115−119.
[6] Mohamed M., Anandan S., Z. Huo, et al Manufacturing and characterization of polyurethane based sandwich composite structures[J]. Composite Structures, 2015, 123: 169-179
[7] ZARETSKY E, ASAF Z, RAN E, et al. Impact response of high density flexible polyurethane foam[J]. International Journal of Impact Engineering, 2012, 39: 1-2
[8] JI Fang, WANG Feng, WANG Kai, et al. Vibration isolation performance of polyurethane interlayer and model test[J]. Ship Science and Technology, 2017, 39(8): 27-34
[9] ARUNKUMAR M. P., PITCHAIMANI J, GANGADHARAN K. V., et al Influence of nature of core on vibro acoustic behavior of sandwich aerospace structures[J]. Aerospace Science and Technology, 2016, 56: 155-167
[10] MELIS Yurddaskal, UGUR Ozmen, MEHMET Kir, et al. The effect of foam properties on vibration response of curved sandwich composite panels[J]. Composite Structures, 2018, 183: 278-285
[11] Jinshui YANG, LI M, Kai-Uwe SCHRÖDERA, et al. Experimental and numerical study on the modal characteristics of hybrid carbon fiber composite foam filled corrugated sandwich cylindrical panels[J]. Polymer Testing, 2018, 68: 8-18
[12] 高处, 刘文夫, 邱伟强, 等. I型夹芯金属夹层板振动特性数值仿真分析[J]. 噪声与振动控制, 2018, 38(4): 76-80
[13] 陆珊珊, 盛美萍, 任杰安. 格栅夹层板抑振性能研究[J]. 动力学与控制学报, 2012, 10(2): 157-161
[14] 赵留平. 基于夹层板的浮阀隔振系统有限元分析[J]. 中国舰船研究, 2010, 5(3): 229-233
[15] 牛壮. 粘弹性夹层板在船尾结构的减振应用研究[D]. 大连: 大连理工大学. 2014.