基于瞬态衰减法,以钢质曲板为基层,橡胶材料为阻尼层,研究基于不同尺度效应、不同测试环境和阻尼层厚度对船舶曲板结构损耗特性的影响。结果表明:曲板结构损耗因子在数值上呈现低频大、高频小的特点,且水下损耗因子数值明显较空气中大;同类构件,尺度效应对船舶曲板结构损耗因子影响较大;增加阻尼层的厚度有利于提高结构的损耗特性,且阻尼层厚度越大,效果越显著。
With the steel curved plate as base and rubber as damping layer, the influence of different scale effects, media and thickness of layer on the damping performance of ship curved plate structures was studied based on the transient decay method. The results show that the value of curved plate structure loss factor is large at the high frequency, while it is small at the low frequency, and the value of underwater loss factor is obviously larger than that of air. For homogeneous components, the scale effects have a great influence on the loss factor of ship curved plate structure. The thickness of the damping layer is beneficial to improving the damping performance of the structure, and the greater the thickness of the laying damping layer, the more significant the influence will be.
2021,43(6): 14-18 收稿日期:2021-03-16
DOI:10.3404/j.issn.1672-7649.2021.06.003
分类号:TB52
作者简介:魏征(1986-),男,工程师,研究方向为舰艇总体与材料工程
参考文献:
[1] 程广利, 朱石坚, 伍先俊. 统计能量分析法及其损耗因子确定方法综述[J]. 船舶工程, 2004, 26(4): 10–15
CHENG G L, ZHU S J, WU X J. A summary of statistical energy analysis method and its loss factor’s determination[J]. Ship Engineering, 2004, 26(4): 10–15
[2] 张志军, 吴闯, 庞福振, 等. 船舶曲板结构构件损耗因子试验研究[J]. 传感器与微系统, 2015, 34(6): 30–32+36
ZHANG Z J, WU C, PANG F Z, et al. Research on test of ship typical structure component loss factor[J]. Transducer and Microsystem Technologies, 2015, 34(6): 30–32+36
[3] 高晟耀, 缪旭弘, 王雪仁, 等. 船舶曲板结构损耗因子实验及应用[J]. 应用声学, 2018, 37(3): 427–432
GAO S Y, MIAO X H, WANG X R, et al. Test and application of ship typical structure loss factor[J]. Journal of Applied Acoustics, 2018, 37(3): 427–432
[4] 任小逆, 洪玲, 高琛琪, 等. 船用阻尼材料研究进展[J]. 舰船科学技术, 2017, 39(21): 1–4
REN X L, HONG L, GAO C Q, et al. The research progress of marine damping materials[J]. Ship Science and Technology, 2017, 39(21): 1–4
[5] 刘海. 阻尼材料在水面舰船的应用[J]. 船舶与海洋工程, 2016, 32(1): 74–78
LIU H. Application of damping material on surface vessels[J]. Naval Architecture and Ocean Engineering, 2016, 32(1): 74–78
[6] ZHANG S H, CHEN H L. A study on the damping characteristics of laminated composites with integral viscoelastic layers[J]. Composite Structures, 2006, 74(1): 63–69
[7] KHAN S U, LI C Y, SIDDIQUI N A, et al. Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes[J]. Composites Science and Technology, 2011, 71(12): 1486–1494
[8] 张若平, 王以鹏. 车身地板阻尼材料的优化研究[J]. 噪声与振动控制, 2018, 38(S1): 254–258
ZHANG R P, WANG Y P. Research of optimization method for damping materials of the vehicle’s floor[J]. Noise and Vibration Control, 2018, 38(S1): 254–258
[9] 李辉, 李斌, 孙国华, 等. 材料及结构参数对约束阻尼结构阻尼性能的影响[J]. 中北大学学报(自然科学版), 2017, 38(6): 697–702
LI H, LI B, SUN G H, et al. Effects of material and structure parameters on damping properties of constrained damping structure[J]. Journal of North University of China (Natural Science Edition), 2017, 38(6): 697–702
[10] 王献忠, 孙龙泉, 邱忠辉, 等. 部分敷设阻尼材料的水下结构声辐射分析[J]. 振动与冲击, 2012, 31(18): 122–127
WANG X Z, SUN L Q, QIU Z H, ZHEN L. Sound radiation analysis for a submerged structure with a viscoelastic damping layer partially covered[J]. Journal of Vibration and Shock, 2012, 31(18): 122–127
[11] 程广利, 关成彬, 胡生亮. 基于Hilbert变换的结构内损耗因子测试研究[J]. 噪声与振动控制, 2006(4): 105–107
CHENG G L, GUAN C B, HU S L. Study on the measurement of structure's internal loss factor based on hilbert transform[J]. Noise and Vibration Control, 2006(4): 105–107