将轮印载荷等效处理为接触区域内的均布压力是目前大多数研究通常采用的方法,但简化的均布压力与实际的接触压力明显不同。基于此,本文以子午线轮胎-铝合金加筋板为研究对象,模拟现实中不同轮胎压载方式下产生的轮印载荷。基于能量法提出使用补偿系数β的圆形均布压力代替实际轮印载荷的等效简化方法,讨论不同加载工况、轮印位置、加筋板结构参数对补偿系数β的影响,最后通过具体的工况算例分别从加载区域、加筋板的最大应力值、加筋板上应力状态分布,验证均布加载补偿系数β的合理性。研究结果表明,本文提出的方法可以有效替代为轮印载荷的简化等效模型,并且与基于规范的计算相比,该方法的计算精度更高。本文提出的补偿系数β用于加筋板最大应力值的预测时,预测精度平均提升33.99%,对此类甲板设计以及强度计算有较好的实际工程应用价值。
The equivalent treatment of the wheel load to the uniform pressure in the contact area is the method commonly used in most studies at present, but the simplified uniform pressure is significantly different from the actual contact pressure. Based on this, this paper takes radial tire-aluminum alloy stiffened plate as the research object, and simulates the wheel load under different tire ballasting methods in reality. Based on the energy method, an equivalent simplified method is proposed to replace the actual wheel load with a circular uniform pressure of compensation coefficient β. The effects of different loading conditions and stiffened plate structural parameters on the compensation coefficient β are discussed; Finally, a concrete example of working conditions was used to verify the rationality of the uniformly distributed load compensation coefficient β from the loading area, the maximum stress value of the stiffened plate, and the stress state distribution on the stiffened plate. The research results show that the compensation coefficient β proposed in this paper can effectively achieve the equivalent treatment of wheel pressure load, and the calculation accuracy of this method is higher than the calculation based on the specification. In addition, when the compensation coefficient β proposed in this paper is used to predict the maximum stress value of the stiffened plate, the prediction accuracy is improved by 33.99% on average. It has good practical engineering application value for such deck design and strength calculation.
2021,43(6): 66-73 收稿日期:2020-05-11
DOI:10.3404/j.issn.1672-7649.2021.06.013
分类号:U663
作者简介:刘赛棚(1994-),男,硕士研究生,研究方向为轮印载荷的等效简化处理
参考文献:
[1] 汤雅敏, 张延昌. 轮印载荷下夹层板直升机平台结构响应特性[J]. 船舶工程, 2019, 4(41): 23–29
TANG Y M, ZHANG Y C. Response characteristic of sandwich plates under different forms of patch loading[J]. Ship Engineering, 2019, 4(41): 23–29
[2] 张文强, 刘俊. 多轮印载荷下车辆甲板板厚设计研究[J]. 船舶工程, 2016, 38(12): 5–9
[3] LLOYD'S REGISTER. Rules and regulations for the classification of naval ships[S]. London: Lloyd's Register, 2015.
[4] STAINBACK J. Structural analysis of helicopter flightand hangar decks[R]. Bethesda, MD: Naval SurfaceWarfare Center, Carderock Division, 2001.
[5] 柳帅蒙. 载重轮胎接地压力模型研究[D]. 西安: 长安大学, 2015.
[6] 刘 聪, 程远胜. 加筋板轮印载荷分布特性的试验与数值分析[J]. 海洋工程, 2017, 35(4): 84–93
LIU C, CHENG Y S, et al. Experiment and numerical analyses on wheel load distribution on stiffened plate[J]. The Ocean Engineering, 2017, 35(4): 84–93. (in Chinese)
[7] The UK Civil Aviation Authority. CAP 437 Standards for Offshore Helicopter Landing Areas[S]. 2013.