为了完整表达双燃料发动机湍流燃烧过程中湍流流动和化学反应的共同影响,在燃烧过程数值计算中将湍流和化学反应机理模型耦合,考虑两者的相互作用,成为可行的办法。在开展不同LNG替代率下双燃料发动机缸内工作过程数值模拟时,将构建的柴油引燃天然气化学反应机理模型耦合到CFD软件中计算,并考虑湍流和化学反应的相互作用。湍流流动采用RNG k-ε模型,化学反应机理模型由简化而来的正庚烷机理(162组分和692步基元反应)、甲烷机理(26组分和122步基元反应)以及扩展的NO热力学机理(3步反应)组成,湍流和化学反应之间的相互作用通过Kong模型建立。结果表明,双燃料工况下发动机的缸内压力要低于纯柴油工况,但氮氧化物的生成也要小于纯柴油工况,且随着LNG替代率的增加,天然气燃烧始点也逐渐延长,缸内压力以及缸内温度峰值也随之下降,氮氧化物的生成也会下降。
In order to fully express the common influence of turbulent flow and chemical reaction in the turbulent combustion process of dual fuel engine, it is feasible to couple the turbulent flow and chemical reaction mechanism model in the numerical calculation of combustion process, and consider the interaction between them. During the numerical simulation of the in-cylinder working process of a dual-fuel engine with different LNG substitution rates, the established chemical reaction mechanism model of diesel-ignited natural gas was coupled to CFD software for calculation, and the interaction of turbulence and chemical reaction was considered. RNG k-ε model was used for turbulent flow. The chemical reaction mechanism model was composed of reduced n-heptane mechanism (162 component and 692 step elementary reaction), reduced methane mechanism (26 component and 122 step elementary reaction) and extended NO thermodynamic mechanism (3-step reaction). The interaction between turbulence and chemical reaction was established by Kong model. The results show that the in-cylinder pressure of the engine under dual-fuel condition is lower than that under pure diesel condition, but the generation of nitrogen oxides is also lower than that under pure diesel condition. Moreover, with the increase of the replacement rate of LNG, the starting point of natural gas combustion is gradually prolonged, the in-cylinder pressure and in-cylinder temperature peak also decrease, and the generation of nitrogen oxides also decreases.
2021,43(6): 122-129 收稿日期:2020-02-21
DOI:10.3404/j.issn.1672-7649.2021.06.023
分类号:TK46+4
作者简介:刘玉坪(1996-),男,硕士研究生,研究方向为船舶动力装置性能与系统优化设计
参考文献:
[1] 汪佳丽. LNG缸内液喷对混合气形成影响的仿真研究[D]吉林: 吉林大学, 2011.
[2] MEYERS D P, BOURN G D, HEDRICK J C, et al. Evaluation of six natural gas combustion systems for LNG locomotive applications[C]// International Fuels & Lubricants Meeting & Exposition. 1997.
[3] 张恒, 龚希武. 柴油引燃缸内直喷天然气发动机燃烧和排放特性研究[J]. 舰船科学技术, 2018, 40(5): 97–101
[4] 肖民, 傅宇. 液态LNG喷雾过程闪急沸腾条件数值模拟研究[J]. 船舶工程, 2017, 39(1): 20–24 + 45
XIAO MIN, FUYU. Numerical simulation research on con-ditions of liquid LNG flash boiling spray[J]. Ship Engi-neering, 2017, 39(1): 20–24 + 45. (in Chinese)
[5] 辛升. 湍流扩散燃烧中守恒标量的数值模拟[D]. 武汉: 华中科技大学, 2004.
[6] KONG S C, et al. Model and experiment of HCCI engine combustion using detailed chemical kinetics and multidimensional CFD[J]. SAE paper, 2001: 2001–01-1026
[7] XIN Wang, LIU Hai-feng, ZHENG Zun-qing, et al. Development of a reduced n -butanol/biodiesel mechanism for a dual fuel engine[J]. Fuel, 2015: 157
[8] LI Yu, LI Hai-lin, GUO Hong-sheng. A numerical investigation on NO 2 formation reaction pathway in a natural gas–diesel dual fuel engine[J]. Combustion and Flame, 2018: 190
[9] HUANG Hao-zhong, LV De-lin, ZHU Ji-zhen, et al. Development of a new reduced diesel/natural gas mechanism for dual-fuel engine combustion and emission prediction[J]. Fuel, 2019: 236
[10] MEHL M, PITZ W J, WESTBROOK C K, et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions[J]. Proceedings of the Combustion Institute, 2011, 33(1): 193–200
[11] 卢海涛, 刘富强, 王于蓝, 等. 正十二烷高温机理简化及验证[J]. 物理化学学报, 2019, 35(5): 486–495
[12] 曹灵, 张尊华, 梁俊杰, 等. 基于着火特性的甲烷-正庚烷混合燃料化学动力学机理简化[J]. 武汉理工大学学报, 2018, 40(2): 58–62+70
[13] 王浒. 柴油机碳烟生成机理多维数值模拟及试验研究[D]. 天津: 天津大学, 2012.
[14] 姚春德, 韩国鹏, 银增辉, 等. 柴油/甲醇高温富燃动力学机理的简化[J]. 天津大学学报, 2015, 48(9): 784–790
[15] ZHU, Zhao-jun, ZHU, Ji-zhen, LV, De-lin, et al. Development of a new reduced diesel/natural gas mechanism for dual-fuel engine combustion and emission prediction[J]. Fuel, 2019, 236(Jan. 15): 30–42
[16] 张格健. 柴油-天然气双燃料发动机燃烧及排放特性数值仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.