为了研究船舶呆木附近流场特性,本文采用计算流体力学方法研究了一艘带呆木的船舶尾部流场。数值仿真首先分析了直航状态下的尾部呆木压力分布和呆木泄出涡形态,然后分析了回转状态下的泄出涡特征。研究表明呆木末端是全船压力最低点,在高速直航时有明显的泄出涡产生,而回转状态下泄出涡大幅减弱或消失。船舶直航时呆木泄出涡存在空化的可能,在船舶设计中不能忽略。
In this paper CFD based numerical simulations are carried out to study the wake flow characteristics of the deadwood fitted on a ship. Firstly, pressure distribution and shedding vortex shape around deadwood under the condition of straight sailing are simulated. Then the vortex characteristics of the shedding vortex under the turning around condition are compared. The study shows that the deadwood is the region of lowest pressure on the hull surface. And obvious shedding vortex occurs when the ship has a working condition of straight sailing. Under the turning around condition, shedding vortex is much weaker than those of straight sailing. The vortex shedding from deadwood has possibilities of cavitation, which should not be ignored in ship design.
2021,43(10): 25-28 收稿日期:2020-11-02
DOI:10.3404/j.issn.1672-7649.2021.10.006
分类号:U661.1
作者简介:饶志强(1986-),男,工程师,主要从事船型开发工作
参考文献:
[1] 程明道, 王莉萍, 朱建良. 高速排水型船支架空化观测[J]. 船舶力学, 2000, 4(2): 19–26
CHENG M D, WANG L P, ZHU J L. Observation of cavitation for a high-speed displacement ship[J]. Journal of Ship Mechanics, 2000, 4(2): 19–26
[2] 黄红波, 许晖, 王建芳, 等. 多桨船双臂支架空泡性能优化及其对螺旋桨空泡性能影响研究[J]. 中国造船, 2015, 56(2): 150–158
HUANG H, XU H, WANG J, et al. Cavitation optimization of v-bracket and its influence on cavitation performance of propellers for multi-propulsor ship[J]. Shipbuilding of China, 2015, 56(2): 150–158
[3] 吕江, 王东涛, 曾志波, 等. 轴系支架空化性能优化研究[C]//第十四届全国水动力学术会议暨第二十八届全国水动力学研讨会, 中国, 吉林长春, 2017.
LV J, WANG D T, ZENG Z B, et al. Optimization research on cavitation performance of the shaft-strut[C]//The 14th National Congress on Hydrodynamics & 28th National Conference on Hydrodynamics, Changchun, Jilin, China, 2017.
[4] 李亮, 张伟, 陆芳, 等. 实船轴支架空泡观测技术研究[C]//第十四届全国水动力学术会议暨第二十八届全国水动力学研讨会, 中国, 吉林长春, 2017.
LI L, ZHANG W, LU F, et al. Research on cavitation observation technique for full Scale ship shaft bracket[C]//The 14th National Congress on Hydrodynamics & 28th National Conference on Hydrodynamics, Changchun, Jilin, China, 2017.
[5] 于安斌, 叶金铭, 王友乾. 扭曲舵抗空化性能模型试验研究[J]. 推进技术, 2019, 40(1): 215–222
YU A B, YE J M, WANG Y Q. Model test research on anti-cavitation performance of twisted rudder model[J]. Journal of propulsion technology, 2019, 40(1): 215–222
[6] 叶金铭, 于安斌, 王友乾, 等. 桨后舵片空泡的分离涡模型模拟及实船舵空泡试验[J]. 哈尔滨工程大学学报, 2019, 40(5): 913–919
YE J, YU A, WANG Y, et al. Detached eddy simulation of sheet cavitation of rudder behind propeller and real ship rudder cavitation test[J]. Journal of Harbin Engineering University, 2019, 40(5): 913–919
[7] 曹彦涛, 叶金铭, 陆芳, 等. 实船舵空化现象试验观察[C]//纪念《船舶力学》创刊二十周年学术会议, 中国, 浙江舟山, 2017.
CAO Y, YE J, LU F, et al. Observation of Cavitation on a Full Scale Rudder[C]// Commemoration Conference for the 20th Anniversary of Journal of Ship Mechanics, Zhoushan, Zhejiang, China, 2017.
[8] 熊鹰, 叶金铭, 樊晓斌, 等. 螺旋桨空泡及其诱导的脉动压力的数值和试验研究[J]. 船舶力学, 2006, 10(5): 32–40
XIONG Y, YE J M, FAN X B, et al. Numerical and experimental research on pressure fluctuations induced by propeller cavitation[J]. Journal of Ship Mechanics, 2006, 10(5): 32–40
[9] 张永坤, 熊鹰, 叶金铭. 水中含气量对螺旋桨空泡噪声影响的试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2009, 33(2): 234–237
Zhang Y, Xiong Y, Ye J. Experimental investigations of influence of gas content in water to propeller cavitation noise[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2009, 33(2): 234–237
[10] 季盛, 董国祥, 陈建挺, 等. 带节能附体螺旋桨空泡脉动压力的试验研究[J]. 上海船舶运输科学研究所学报, 2012, 35(2): 39–46
JI S, DONG G, CHEN J, et al. Experimental study of propeller induced cavitation and pressure pulse with energy-saving appendages[J]. Journal of Shanghai Ship and Shipping Research Institute, 2012, 35(2): 39–46
[11] LIU D C, ZHOU W X. Numerical predictions of the propeller cavitation pressure fluctuation behind ship and comparison with experiment[J]. Journal of Ship Mechanics, 2019, 23(3): 245–254
[12] 武珅, 芮伟, 曾志波. 冰块阻塞状态的螺旋桨空泡激振力特性分析[J]. 舰船科学技术, 2019, 41(19): 21–26
WU S, RUI W, ZENG Z B. Investigation on the characteristics of cavitation excited force of propeller in ice block condition[J]. Ship Science and Technology, 2019, 41(19): 21–26
[13] 赵战华, 匡晓峰, 范亚丽, 等. 呆木对拖航稳定性影响的试验研究[C]//第十三届全国水动力学学术会议暨第二十六届全国水动力学研讨会, 山东青岛, 2015.
ZHAO Z H, KUANG X F, FAN Y L, et al. Experimental study of effect of dead wood on towing stability[C]//The 13th National Congress on Hydrodynamics & 26th National Conference on Hydrodynamics, Qingdao, Shandong, China, 2017.
[14] 曹留帅, 朱军, 黄昆仑. 舰船呆木设计及对操纵性影响研究[J]. 中国舰船研究, 2012, 7(2): 20–23+28
CAO L S, ZHU J, HUANG K L. Design of the dead wood and its effect on ship maneuverability[J]. Chinese Journal of Ship Research, 2012, 7(2): 20–23+28
[15] L.普朗特, K.奥斯瓦提奇, K.维格哈特著, 郭永怀, 陆士嘉译. 流体力学概论[M]. 北京: 科学出版社, 1984: 276-277.