针对不平衡-碰摩耦合故障引发轴系振动的问题,采用多体系统动力学法进行理论与仿真研究。首先在螺旋桨推进轴系动力学模型的基础上,推导耦合故障作用下的多柔体系统动力学方程;然后利用SolidWorks、Adams建立螺旋桨推进轴系试验台刚柔混合模型,对模型进行仿真;最后分析耦合故障作用下轴系的振动特性。仿真研究表明:不平衡-碰摩耦合故障的发生,会使得轴系的振动变得更加复杂,特征频率出现了大量的高倍转频;转速越高,出现高倍转频的现象越明显,振动越复杂。
Aiming at the problem of shafting vibration caused by unbalanced - rubbing coupling fault, the multi-body system dynamics method is used to carry out theoretical and simulation research. Firstly, based on the propeller propulsion shafting dynamic model, the dynamic equation of multi-flexible body system under coupling fault is derived. Then, SolidWorks and ADAMS are used to establish the rigid and flexible mixing model of propeller propulsion shafting test bench, and the model is simulated. Finally, the vibration characteristics of shafting under coupling fault are analyzed. The simulation research shows that the occurrence of unbalanced and rubbing coupling fault will make the vibration of shafting more complex, and a large number of high frequency conversion and some frequency division appear at the characteristic frequency. The higher the rotational speed and rubbing stiffness, the more obvious the phenomenon of high frequency conversion and frequency division is, that is, the more complex the vibration is.
2021,43(10): 122-126 收稿日期:2020-08-12
DOI:10.3404/j.issn.1672-7649.2021.10.025
分类号:TP391.9
基金项目:十三五装备预先研究项目
作者简介:徐锴(1995-),男,硕士研究生,主要从事船舶轴系故障振动特性研究
参考文献:
[1] 宾光富, 李学军, 蒋勉, 等. 三支撑轴系转子残余不平衡量相位差组合振动特性研究[J]. 动力学与控制学报, 2017(5): 446–452
BIN Guangfu, LI Xuejun, JIANG Mian, et al. Study on combined vibration characteristics of residual unbalance and phase difference of rotor with three supports[J]. Journal of Dynamics and Control, 2017(5): 446–452
[2] 兴成宏, 李迎丽, 张玲. 转子不平衡故障在诊断中的有效应用[J]. 设备管理与维修, 2019(11): 175–176
XING Chenghong, LI Yingli, ZHANG Ling. Effective application of rotor unbalance fault in diagnosis[J]. Equipment Management and Maintenance, 2019(11): 175–176
[3] SHEN X Y, JIA J H, HAO M Z. Numerical analysis of a rub- impact rotor-bearing system with mass unbalance[J]. Journal of Vibration and Control, 2007, 13(12): 1819–1834
[4] 陈果, 李成刚, 王德友. 航空发动机转子-滚动轴承-支承-机匣耦合系统的碰摩故障分析与验证[J]. 航空动力学报, 2008, 23(7): 1304–1311
CHEN Guo, LI Chenggang, WANG Deyou. Analysis and verification of rub impact fault of aeroengine rotor rolling bearing support casing coupling system[J]. Journal of Aeronautical Dynamics, 2008, 23(7): 1304–1311
[5] MA H, SHI C, HAN Q, et al. Fixed-point rubbing fault characteristic analysis of a rotor system based on contact theory[J]. Mechanical Systems & Signal Processing, 2013, 38(1): 137–153
[6] LIU Y, LI Y, SHI T, et al. Study on Misalignment-rubbing coupling fault of rotor system supported by oil film force[J]. Journal of Mechanical Engineering, 2016, 52(13): 79–86
[7] ALEXANDER P, MANJURUL I, JAEYOUNG K, et al. Rub-impact fault diagnosis using an effective IMF selection technique in ensemble empirical mode decomposition and hybrid feature models[J]. Sensors, 2018, 18(7): 2040
[8] 周春良. 船舶轴系振动研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.
ZHOU Chunliang. Study on vibration of ship shafting [D]. Harbin: Harbin Engineering University, 2006
[9] 张青林. 基于刚柔耦合的整车动力学仿真及悬架参数优化[D]. 重庆: 重庆理工大学, 2015.
ZHANG Qinglin. Vehicle dynamics simulation and suspension parameter optimization based on rigid flexible coupling [D]. Chongqing: Chongqing University of Technology, 2015
[10] 陆杰. 基于ADAMS的船舶推进轴系振动状态虚拟样机分析方法研究[D]. 武汉: 海军工程大学, 2018.
LU Jie. Research on virtual prototype analysis method of ship propulsion shafting vibration state based on ADAMS [D]. Wuhan: Naval Engineering University, 2018