为解决船体表面生物污损现象造成的船舶运行阻力增大、寿命降低等问题。本文研究利用反应离子刻蚀(RIE)技术方法,制备具有特定微结构的304不锈钢防污表面,选用三角褐指藻(P. tricornutum)和小球藻(C. pyrenoidosa)为目的污损生物,对微结构表面开展防污实验。使用接触角测量仪分析微结构表面的浸润性,利用激光扫描共聚焦显微镜(LSCM)和ImageJ软件对微结构表面的防污性能进行评价。结果表明:微结构表面接触角增大至108.5°,为疏水表面;微结构表面对三角褐指藻和小球藻的抑制率达到91.5%和89.8%,显示出优异的防污能力。该新型微结构表面为船舶绿色防污减阻表面的设计提供依据。
Aiming at the problem of increased ship operation resistance and reduced life span caused by the phenomenon of biofouling on the hull surface, reactive ion etching (RIE) technology was applied to prepare a 304 stainless steel antifouling surface with a specific microstructure. P. tricornutum and C. pyrenoidosa were selected as the target fouling organisms, Carry out anti-fouling experiments on the surface of the microstructure. A contact angle measuring instrument was used to analyze the wettability of the microstructure surface, and the antifouling performance of the microstructure surface was evaluated using a laser scanning confocal microscope (LSCM) and ImageJ software. The results showed that the contact angle of the microstructure surface increased to 108.5° and became a hydrophobic surface; the inhibition rate of the microstructure surface on P. tricornutum and C. pyrenoidosa reached 91.5% and 89.8%, showing excellent antifouling ability. The new microstructured surface provides a basis for the design of the green anti-fouling and drag-reducing surface of ships.
2022,44(1): 82-85 收稿日期:2021-03-08
DOI:10.3404/j.issn.1672-7649.2022.01.016
分类号:U687.5
基金项目:国家自然科学基金资助项目(51905468);江苏省自然科学基金资助项目(BK20190916)
作者简介:曹攀(1989-),男,博士,副教授,主要研究方向为船体绿色防污新技术
参考文献:
[1] XIE Q, PAN J, MA C, et al. Dynamic surface antifouling: mechanism and systems[J]. Soft Matter, 2019, 15(6): 1087–1107
[2] HE X Y, CAO P, TIAN F, et al. Infused configurations induced by structures influence stability and antifouling performance of biomimetic lubricant-infused surfaces[J]. Surface and Coating Technology, 2019, 358: 159–166
[3] SUN M, WU Q, XU J, et al. Vapor-based grafting of crosslinked poly(N-vinyl pyrrolidone) coatings with tuned hydrophilicity and anti-biofouling properties[J]. Journal of Material Chemistry B, 2016, 4(15): 2669–2678
[4] SCHULTZ M P, BENDICK J A, HOLM E R, et al. Economic impact of biofouling on a naval surface ship[J]. Biofouling, 2011, 27(1): 87–98
[5] 白秀琴, 袁成清, 严新平. 基于表面能协同调控的材料表面防污性能设计[J]. 船海工程, 2016, 45(1): 55–60
[6] 马春风, 刘光明, 张广照. 环境友好海洋防污体系的研究进展[J]. 大学化学, 2016, 31(2): 1–5
[7] YANG Z R, GUO Z W, YUAN C Q. Tribological behavior of polymer composites functionalized with various microcapsule core materials[J]. Wear, 2019, 426-427: 853–861
[8] 潘莹, 张三平, 周建龙, 等. 有机硅低表面能防污涂料控制因素与研究进展[J]. 涂料工业, 2009, 39(12): 59–62
[9] CAO P, DU C W, HE X Y, et al. Modification of a derived antimicrobial peptide on steel surface for marine bacterial resistance[J]. Applied Surface Science, 2020, 510(13): 145512
[10] ABARZUA S, JAKUBOWSKI S, ECKERT S, et al. Biotechnological investigation for the prevention of marine biofouling II. Blue-green algae as potential producers of biogenic agents for the growth inhibition of microfouling organisms[J]. Botanica Marina, 1999, 42(5): 459–465
[11] BIXLER G D, BHUSHAN B. Rice and butterfly wing effect inspired low drag and antifouling surfaces: a review[J]. Critical Reviews in Solid State and Materials Sciences, 2015, 40(1): 1–37
[12] SCHUMACHER J F, CARMAN M L, ESTES T G, et al. Engineered antifouling microtopographies–effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva[J]. Biofouling, 2007, 23(1): 55–62
[13] BERS A V, WAHL M. The influence of natural surface microtopographies on fouling[J]. Biofouling, 2004, 20(1): 43–51
[14] ZHANG H R, YANG F Y, DONG J J, et al. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation[J]. Nature Communications, 2016, 7(1): 13743
[15] BAI X q, XIE G t, FAN H, et al. Study on biomimetic preparation of shell surface microstructure for ship antifouling[J]. Wear, 2013, 306(1): 285–295
[16] FU Y f, YUAN C q, BAI X q, et al. Study on drag reduction performance of antifouling ribbed surfaces[J]. Journal of Ship Production and Design, 2017, 33(3): 1–10
[17] 郑纪勇, 蔺存国, 张金伟. 一种表面具有十字形规则微结构的防污材料的制备方法[P]. 中国专利: CN201110376218.3, 2013-06-12.
[18] BERNTSSON K M, JONSSON P R, LEJHALL M, et al. Analysis of behavioural rejection of micro-textured surfaces and implications for recruitment by the barnacle Balanus improvisus[J]. Journal of Experimental Marine Biology and Ecology, 2000, 251(1): 59–83
[19] CARMAN M L, ESTES T G, FEINBERG A W, et al. Engineered antifouling microtopgraphies-correlating wettability with cell attachment[J]. Biofouling, 2006, 22(1–2): 11–21
[20] HILLS J M, THOMASON J C. The effect of scales of surface roughness on the settlement of barnacle (Semibalanus balanoides) cyprids[J]. Biofouling, 1998, 12(1): 57–69
[21] SCARDINO A J, HARVEY E, DE N R. Testing attachment point theory: Diatom attachment on microtextured polyimide biomimics[J]. Biofouling, 2006, 22(1): 55–60
[22] SCARDINO A J, GUENTHER J, NYS R D. Attachment point theory revisited: the fouling response to a microtextured matrix[J]. Biofouling, 2008, 24(1): 45–53
[23] SCHNEIDER C, RASBAND W, ELICEIRI K. NIH image to imageJ: 25 years of image analysis[J]. Nature Methods, 2012, 9: 671–675
[24] HE X y, CAO P, TIAN F, et al. Autoclaving-induced in-situ grown hierarchical structures for construction of superhydrophobic surfaces: A new route to fabricate antifouling coatings[J]. Surface & Coating Technology, 2019, 357: 180–188