通过Fluent中的6DOF动网格技术和RNG湍流模型对超空泡六尾翼枪弹尾部枪弹不同楔角进行数值仿真。仿真表明空泡气流稳定前楔角为60°的六尾翼枪弹的弹道特征及速度波动大于楔角为30°和楔角为45°的六尾翼枪弹,空泡气流稳定后楔角为60°的六尾翼枪弹的弹道特征及速度波动小于楔角为30°和楔角为45°的六尾翼枪弹。六尾翼超空泡枪弹发生失稳的主要原因是尾翼受到强烈的水蒸气和空气组成的空泡气流的干扰,六尾翼枪弹的尾翼受力不均,导致枪弹向非击发方向偏转,使得六尾翼枪弹失衡。
6DOF dynamic mesh technology in Fluent software and RNG turbulence model were used to simulate different wedge angles in the tail of a supercavitating six-tailed projectile. The simulation results show that the ballistic characteristics and velocity fluctuation of the six-tailed projectile with the wedge angle of 60° before the cavitation airflow stabilization are greater than those of the six-tailed projectile with the wedge angle of 30° and 45°, and those of the six-tailed projectile with the wedge angle of 60° after the cavitation airflow stabilization are Less than those of the six-tailed projectile with the wedge angle of 30° and 45°.The main reason for the instability of the six-tail supercavitation projectile is that the tail is disturbed by the strong water vapor and the cavitation airflow composed of air. The uneven force on the tail of the six-tail projectile leads to the deflection of the projectile to the nll-firing direction, which makes the six-tail projectile unbalanced.
2022,44(5): 11-15 收稿日期:2021-06-01
DOI:10.3404/j.issn.1672-7649.2022.05.003
分类号:TJ011.+3
基金项目:国家自然科学基金青年项目(51904069);河北省自然科学基金资助项目(E2019501085);东北大学秦皇岛分校科研启动资金项目(XNY201808)
作者简介:郝博(1963-),男,博士,教授,研究方向为超空泡武器技术
参考文献:
[1] 熊天红, 张木, 易文俊, 等. 带尾翼水下航行体超空泡流数值模拟研究[J]. 弹道学报, 2013, 25(04): 43-47
[2] 何远航, 王海福. 尾翼子弹气动特性及飞行弹道[J]. 弹箭与制导学报, 2005, (S5): 554-556.
[3] 梁景奇, 王瑞, 徐保成, 等. 攻角对高速射弹入水过程影响研究[J]. 兵器装备工程学报, 2020, 41(7): 23-28
[4] 赵成功, 王聪, 魏英杰, 等. 尾翼对高速射弹的空化与阻力特性影响分析[J]. 哈尔滨工业大学学报, 2017, 49(10): 126-131
[5] 潘展程. 通气超空泡流动结构与稳定性研究[D]. 上海: 上海交通大学, 2014.
[6] 鲁林旺, 施红辉. 射弹尾翼数对超空泡流特性的影响[J]. 浙江理工大学学报(自然科学版), 2018, 39(5): 580-586
[7] 周梦笛, 曹从咏, 盛楚倩. 基于6DOF的高速射弹入水超空泡特性研究[J]. 火炮发射与控制学报, 2019, 40(3): 12-15+28
[8] 周清强. 带尾翼通气超空泡航行体流体动力数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2013.
[9] 孙士明, 颜开, 褚学森, 等. 射弹高速斜入水过程的数值仿真[J]. 兵工学报, 2020, 41(S1): 122-127
[10] 邹望. 基于Logvinovich原理的通气超空泡理论及其数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
[11] 王瑞, 党建军, 姚忠, 等. 带尾翼射弹跨音速运动过程超空泡流研究[J]. 船舶力学, 2019, 23(10): 1160-1167
[12] 鲁林旺. 复杂结构体射弹出入水时超空泡流特性的研究[D]. 杭州: 浙江理工大学, 2019.
[13] 黄岚. 超空泡高速射弹变介质运动仿真及弹道特性研究[D]. 太原: 中北大学, 2018.
[14] ABELSON H. I. A prediction of water-entry cavity shape[J]. Journal of Basic Engineering, 1971, 93(4): 501-503
[15] CHALLA R, et al. Rigid-object water-entry impact dynamics: finite-element/smoothed particle hydrodynamics modeling and experimental validation[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(3).
[16] DEl B A, et al. Water entry and exit of 2D and axisymmetric bodies[J]. Journal of Fluids and Structures, 2021: 103