本文基于计算流体力学(CFD)方法,采用RNG k-ε 湍流方程,对大型邮轮典型4人舱室气流分布及污染物传播进行数值模拟研究。对比4种典型气流组织形式下舱内气流分布性能的优劣,以及人员进行一次咳嗽后液滴在空气中的传播规律。研究表明:散流器上送上回的气流形式气流性能较优,ADPI接近90%,而下送上回的置换通风模式能量利用系数较高;采取置换通风的方式时,人员感染病毒的概率最低,而采取散流器混合送风时,人员感染病毒的概率最高;气流组织形式对各位置人员头部液滴浓度影响较大,采取混合通风和负压舱室通风模式时同侧人员感染病毒概率较大,而采取置换通风模式时异侧上铺人员感染概率较大。本文的研究对于目前新型冠状病毒全球大流行背景下大型邮轮舱室布局、通风系统配置等具有现实指导意义。
This article carries out numerical simulation of air distribution and pollutant transport in typical four cabin of major cruise based on CFD by RNG k-$ \varepsilon $turbulence equation. It compares the advantages and disadvantages of cabin air flow performance of four typical air distribution form. And it studies the law of droplet propagation after a cough. The research shows that the airflow form of upper supply air and upper return air by diffuser has better airflow performance and ADPI is close to 90 percent. The displacement ventilation form from the bottom and supply air from the top has better energy utilization coefficient. People are the least likely to be infected by displacement ventilation and are most likely to be infected by mixing ventilation. The air distribution form has great influence on the concentration of head droplet of personnel in each position.The same side people has higher probability to be infected by mixing ventilation and negative pressure cabin ventilation. The other side people has higher probability to be infected by displacement ventilation. This study has practical significance for the cabin layout and ventilation system configuration of large cruise ships in the context of novel Coronavirus global pandemic.
2022,44(5): 37-44 收稿日期:2021-08-28
DOI:10.3404/j.issn.1672-7649.2022.05.008
分类号:U674.11
作者简介:汤婧(1988-),女,硕士,讲师,主要研究方向为船舶与海洋工程结构设计
参考文献:
[1] 周爱民, 余涛, 沈旭东. 船舶污染物传播研究进展[J]. 舰船科学技术, 2014, 36(1): 10-15
ZHOU Ai-min, YU Tao, SHEN Xu-dong. Research advances on air contaminant transport in ship cabin[J]. Ship Science and Technology, 2014, 36(1): 10-15
[2] 李先庭, 赵彬. 室内空气流动数值模拟[M]. 北京: 机械工业出版社, 2008.
[3] 鹿世化, 黄虎, 李奇贺. 数值模拟勇于室内空气质量控制的研究进展[J]. 暖通空调, 2007, 37(5): 40-46
LIAO Shi-hua,HUANG Hu,LI Qi-he. Study progress in numerical simulation applied to control of indoor air quality[J]. Journal of HVAC, 2007, 37(5): 40-46
[4] WAN M p, SZE T, G N, CHAO C Y H, et al. Modeling the fate of expiratory aerosols and the associated infection risk in an aircraft cabin environment[J]. Aerosol. Science. Technology. , 43(4), 322?343.
[5] YAN W, ZHANG Y, SUN Y, et al. Experimental and CFD study of unsteady airborne pollutant transport within an aircraft cabin mock-up[J]. Build. Environ., 2009, 44(1), 34?43.
[6] ZHANG Z, CHEN X, MAZUMDAR S, et al. Experimental and numerical investigation of airflow and numerical investigation of airflow and contaminant transport in an airliner cabin mockup[J]. Build Environ, 2009, 44(1), 85?94.
[7] ZHANG Z, CHEN Q. Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms[J]. Atmospheric Environment, 2006, 40(18).
[8] BIVOLAROVA M P, MELIKOV A K, MIZUTANI C, et al. Bed-integrated local exhaust ventilation system combined with local air cleaning for improved IAQ in hospital patient rooms. Building and Environment. 2016, 100: 10?18.
[9] HE Q B, NIU J L, GAO N P, et al. CFD study of exhaled droplet transmission between occupants under different ventilation strategies in a typical office room[J] Building and Environment, 2011, 46(2): 397?408.
[10] YUAN X, CHEN Q, GLICKSMAN L R, et al. Measurements and computations of room airflow with displacement ventilation[J]. ASHRAE Transactions, 1999, 105(1): 340-352
[11] 朱颖心. 建筑环境学(第二版)[M]. 北京: 中国建筑工业出版社, 2005.
[12] GB/T 13409-1992船舶起居处所空气调节与通风设计参数和计算方法[S].
GB/T 13409-1992Air-conditioning and ventilation of accommodation spaces on board ships-design parameter and method of calculations[S].
[13] GUPTA J K, LIN C H, CHEN Q. Flow dynamics and characterization of a cough[J]. Indoor Air, 2009, 19(6): 517-525
[14] 黄翔. 空调工程(第三版)[M]. 北京: 机械工业出版社, 2017.11.