本文使用了质量、动量和能量守恒量,对KdV方程和BBM方程两孤立波完全相互作用特性进行近似解析和数值研究,应用守恒量等式计算合并波形,无需求解相关的非线性偏微分方程。综合比较了KdV方程和BBM方程的数值计算结果以及近似合并波形解析结果,使用守恒量近似分析方法研究两孤立波相互作用,可以用较小的计算量获得各种有用的计算结果。研究表明,该方法具有较好的工程近似精度,可适用于预测波浪与海洋、海岸和运河结构物等相互作用情况。
This paper uses the conserved quantities of mass, momentum and energy to approximate and analytically study the complete interaction of solitary waves in KdV equation and BBM equation. The conserved quantities are applied to calculate the merged wave without solving nonlinear partial differential equations. The numerical results of KdV equation and BBM equation and the analytical results of approximate merged wave are comprehensively compared. It is considered that using the conserved quantities to study the solitary wave interaction has a good approximate analytical model and a small amount of calculation. The results show that this method has good engineering approximation accuracy and maybe suitable for predicting the interaction between waves and ocean, coastal and canal structures.
2022,44(5): 76-79 收稿日期:2021-11-19
DOI:10.3404/j.issn.1672-7649.2022.05.015
分类号:TP139.2
基金项目:国家自然科学基金资助项目(12002390;12072126;12062018;12172333);内蒙古自然科学基金资助项目(No.2020MS01015);内蒙古自治区高等学校青年科技英才支持计划资助项目(NJYT22075)
作者简介:尤翔程(1981?),女,博士,讲师,研究方向为流体传热及非线性波浪
参考文献:
[1] WHITHAM G B. Linear and nonlinear waves[M]. New York: John Wiley, 1974: 454-471.
[2] DAUXOIS T, PEYRARD M. Physics of solitons[M]. Cambridge: Cambridge University Press, 2006: 185-211.
[3] MIURA R, GARDNER C S, KRUSKAL M. Korteweg-de Vries equation and generalizations. II. existence of conservation laws and constants of motion[J]. Journal of Mathematical Physics, 1968, 9: 1204
[4] HIROTA R. An exact solution has been obtained for the Korteweg-de Vries equation for the case of multiple collisions of N solitons with different amplitudes[J]. Physical Review Letters, 1971, 27: 1192
[5] 王建勇, 程雪苹, 曾莹, 等. Korteweg-de Vries方程的准孤立子解及其在离子声波中的应用[J] . 物理学报, 2018, 67(11): 110201.
[6] KUDRYASHOV N A. Traveling wave reduction of the modified KdV hierarchy: the lax pair and the first integrals[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 73: 472-480
[7] ZHANG G Q, YAN Z Y. Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions[J]. Physica D:Nonlinear Phenomena, 2020, 402: 132170
[8] PEREGRINE D H. Calculations of the development of an undularbore[J]. Journal of Fluid Mechanics, 1964, 25(2): 321-330
[9] BENJAMIN T B, BONA J L, MAHONY J J. Model Equations for Long Waves in Nonlinear Dispersive Systems[J]. Philosophical Transactions of the Royal Society of London, 1972, 272(1220): 47-78
[10] 陈旭东, 朱仁庆, 杨帆, 等. 畸形波作用下浮体的载荷与响应研究新方法[J]. 舰船科学技术, 2018, 40(5): 8-14
[11] 尤翔程, 李世远. 纳米颗粒球形度对倾斜通道中纳米流体反向混合对流传热的影响[J]. 石油科学通报, 2021, 6(4): 604-613
[12] ZABUSKY N J, KRUSKAL M D. Interaction of solitons in a collisionless plasma and the recurrence of initial states[J]. Physical Review Letters, 1965, 15: 240-243
[13] GARDNER C S, GREENE J M, KRUSKAL M D, et al. Korteweg-de Vries equation and generalization VI. methods for exact solution[J]. Communications on Pure and Applied Mathematics, 1974, 27: 97-133
[14] 王明亮. BBM方程的孤立波解及其互相作用[J]. 兰州大学学报(自然科学版), 1993, 29(1): 7-13
[15] 韩海英, 那仁满都拉. KdV孤子与BBM孤子基本特性的比较研究[J]. 内蒙古民族大学学报(自然科学版), 2021, 36(1): 19-24
HAN H Y, Narenmandula. A comparative study of the basic properties of KdV and BBM solitons[J]. Journal of Inner Mongolia University for Nationalities, 2021, 36(1): 19-24
[16] 包立平, 李瑞翔, 吴立群. 一类KdV-Burgers方程的奇摄动解与孤子解[J]. 应用数学和力学, 2021, 42(9): 948-957
[17] BONA J L, PRITCHARD W G, SCOTT L R. Solitary wave interaction[J]. Physics of Fluids, 1980, 23(3): 438-441
[18] CAI J X, HONG Q, YANG B. Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity[J]. Chinese Physics B, 2017, 26(10): 100202
[19] TAYLOR P H. A simple approach for shallow-water solitary wave interactions[C]//Proceedings of 20th Australasian Fluid Mechanics Conference (AFMC 2016). Perth, Australia, 2016: 1-4.