调研了解到部分上述高端装备或其他水下平台在水下作业过程中,可能遇到的载荷吊放、载荷拖曳、载荷回收等工况下缆索张力动态非线性变化的问题。基于Ablow提出的缆索偏微分控制方程,通过在采用有限差分法求解过程中动态调整缆索微元的长度进行缆索收放过程仿真,建立了潜水器-缆索-载荷三者间相互耦合的动力学模型,并基于建立的仿真方法对潜水器拖曳载荷进行变深度航行、潜水器变深度直航过程中起吊载荷过程中缆索-载荷系统对潜水器的影响及缆索自身的动态响应特性进行了研究。结果表明:稳定拖曳过程中,由于缆索-载荷系统的阻力,导致速度降低;拖曳起吊过程中的缆索张力变化明显,且缆索张力对收缆的速度变化敏感;拖曳稳定航行段潜水器速度与理论值一致,表明了本文方法的正确性。
According to the investigation, the problem of dynamic nonlinear variation of cable tension may be encountered during the underwater operation of some of the above-mentioned high-end equipment or other underwater platforms under load lifting, load towing, load recovery and other conditions. Based on the cable partial differential governing equation proposed by Ablow, the paper simulates the cable retraction process by dynamically adjusting the length of cable micro element in the process of solving by using the finite difference method, and establishes the dynamic model of the interaction among the submersible, cable and load. Based on the established simulation method, the influence of the tether-load system on the submersible and the dynamic response characteristics of the cable are studied in the process of variable depth navigation with load towing and variable depth navigation with load recovery. The results show that in the process of stable towing, due to the resistance of the cable-load system, the speed decreases. The cable tension changes obviously during the towing process, and the cable tension is sensitive to the change of the cable hauling speed. The velocity of the towed submersible is consistent with the theoretical value, which indicates the correctness of the proposed method.
2022,44(7): 55-61 收稿日期:2021-08-09
DOI:10.3404/j.issn.1672-7649.2022.07.011
分类号:U674.941
作者简介:郑鹏(1994-),男,硕士,工程师,研究方向为水下潜器总体设计、性能优化与力学仿真
参考文献:
[1] 崔维成, 刘峰, 胡震, 等. 蛟龙号载人潜水器的7000米海上试验[J]. 船舶力学, 2012, 16(10): 1131–1143
CUI Weicheng, LIU Feng, HU Zhen et al.7000m sea trials test of deep manned submersible “JIAOLONG”[J]. Journal of Ship Mechanics, 2012, 16(10): 1131–1143
[2] 曹俊, 胡震, 刘涛, 等. 深海潜水器装备体系现状及发展分析[J]. 中国造船, 2020, 61(1): 204–218
CAO Jun, HU Zhen, LIU Tao et al. Current situation and development of deep-sea submersible equipment[J]. SHIPBUILDING OF CHINA, 2020, 61(1): 204–218
[3] 丁军, 程小明, 田超, 等. 近岛礁浅水环境下浮式平台系泊系统设计研究[J]. 船舶力学, 2015, 19(7): 28–36
DING Jun, CHENG Xiao-Ming, TIAN Chao et al. Investigation on mooring system design for a floating platform in shallow water near islands and reefs[J]. Journal of Ship Mechanics, 2015, 19(7): 28–36
[4] 余 龙, 谭家华. 基于准静定方法的多成分系泊线优化[J]. 海洋工程, 2005, 23(1): 69–73
YU Long, TAN Jia-Hua. Research on optimum multi-component mooring lines based on catenary equation[J]. The Ocean Engineering, 2005, 23(1): 69–73
[5] 王飞, 黄国樑, 邓德衡. 水下拖曳系统的稳态运动分析与设计[J]. 上海交通大学学报, 2008(04): 679–684
WANG Fei, HUANG Guo-Liang, DENG De-Heng. The design and steady-state simulation of underwater towed system[J]. Journal of Shanghai Jiaotong University, 2008(04): 679–684
[6] 姚晨佼, 许可, 范华涛, 等. 基于载人潜水器的深海敷缆运动仿真[J]. 船舶工程, 2018, 40(11): 93–99
YAO Chen-Jiao, XU Ke, FAN Hua-Tao et al. Motion simulation of deep-sea cable-laying based on manned submarine[J]. Ship Engineering, 2018, 40(11): 93–99
[7] Ablow C M, Schechter S. Numerical simulation of undersea cable dynamics[J]. Ocean Engineering, 1983, 10(6): 443–457
[8] Burgess JJ. Equations of motion of a submerged cable with bending stiffness[J]. Dynamics, 1992.
[9] 李英辉, 李喜斌, 戴杰, 等. 拖曳系统计算中拖缆与拖体的耦合计算[J]. 海洋工程, 2002(04): 37–42
LI Ying-Hui, LI Xi-Bin, DAI Jie et al. Calculation of coupling between the cable and the towed-body in the towed system[J]. The Ocean Engineering, 2002(04): 37–42
[10] 付薇. 水下航行器拖曳系统运动仿真研究[D]. 北京: 中国舰船研究院, 2015.
[11] 王飞. 海洋勘探拖曳系统运动仿真与控制技术研究[D]. 上海: 上海交通大学, 2007.
[12] 陆肇康, 朱克强. 海洋非定常缆索系统三维动态仿真[J]. 华东船舶工业学院学报(自然科学版), 2003(02): 6–11
LU Zhao-Kang, ZHU Ke Qiang. Dynamic simulation of system of ocean changeable cable in three dimensions[J]. Journal of East China Shipbuilding Institute(Natural Science Edition), 2003(02): 6–11
[13] Huston R L, Kamman J W. Validation of finite segment cable models[J]. Computers & Structures, 1982, 15(6): 653–660
[14] Kamman J W, Nguyen T C, Crane J W. Modeling towed cable systems dynamics[C]. Oceans. IEEE, 1989.
[15] 李晓平. 多体系统动力学建模方法及其在水下缆索中的应用研究[D]. 天津: 天津大学, 2004.
[16] 彭云, 杨军刚, 肖勇, 等. 重力对大型环形可展天线展开动力学的影响研究[J]. 工程力学, 2018, 35(04): 234–242
PENG Yun, YANG Jun-Gang, XIAO Yong et al. Gravity effect on deployment dynamics of astromesh[J]. Engineering Mechanics, 2018, 35(04): 234–242
[17] Fossen, T. I. Nonlinear modeling and control of underwater vehicles[D]. Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway. 1991.
[18] Healey A J, Marco D B. Slow speed flight control of autonomous underwater vehicles: experimental results with NPS AUV II[J]. ISOPE, 1992.
[19] Healey A J, Lienard D. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles[J]. IEEE Journal of Ocean Engineering, 1993, 18(3): 327-339.
[20] Healey A J, Marco D B, Mcghee R B, et al. Tactical / execution level coordination for hover control of the NPS AUV II using onboard sonar servoing[J]. Proceedings Of The Ieee Symposium On Autonomous Underwater Vehicle Technology, 1994.
[21] Rispin, P. Memorandum. David W, Taylor Naval Ship Research and Development Center. Bethesda, Maryland. 1980.