针对船舶自动化研究领域中的路径规划和路径跟踪2个问题,提出一种基于改进蚁群算法的船舶路径规划方法。为了更好解决传统蚁群算法存在的问题,使用人工势场法改进蚁群算法信息素更新策略,统筹船舶路径规划与船舶路径跟踪控制问题,通过引入神经网络对船舶动力学子系统的未知不确定项进行逼近,设计一种基于径向基神经网络算法的滑模控制器,仿真实验验证了本文所提出算法的有效性。
Aiming at the two problems of path planning and path tracking in the field of ship automation research, proposes a ship path planning method based on improved ant colony algorithm. In order to better solve the problems of the traditional ant colony algorithm, the artificial potential field method is used to improve the pheromone update strategy of the ant colony algorithm, and the ship path planning and ship path tracking control issues are coordinated, and the unknown uncertainty of the ship dynamics subsystem is introduced by the neural network. The items are approximated, and a sliding mode controller based on radial basis function neural network algorithm is designed,Simulation experiments verify the effectiveness of the algorithm proposed in this paper.
2022,44(7): 68-73 收稿日期:2021-08-30
DOI:10.3404/j.issn.1672-7649.2022.07.013
分类号:U675.96
基金项目:国家自然科学基金重点项目(51939001),国家自然科学基金面上项目(61976033),国家自然科学基金青年基金项目(61803064);辽宁省自然科学基金项目(20170540098);中央高校基本科研业务费项目(3132021144, 3132021135)
作者简介:李伟(1968-),男,博士,教授,研究方向为船舶智能控制、船舶自动避碰、海上安全评估以及船舶操纵性能
参考文献:
[1] NIE J, LIN X. Failos guidance law based adaptive fuzzy finite-time path following control for underactuated msv[J]. Ocean Engineering, 2019, 195: 106726
[2] ZHENG Z, XIE L. Finite-time path following control for a stratospheric airship with input saturation and error constraint[J]. International-Journal of Control, 2019, 92(2): 368–393
[3] 曾华宝. 基于终端滑模的欠驱动船舶路径跟踪自适应控制[D]. 大连: 大连海事大学, 2020.
[4] HEALEY A J, LIENARD D. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles[J]. Oceanic Engineering IEEE Journal of, 1993, 18(3): 327–339
[5] FOSSEN T I, BREIVIK M, SKJETNE R. Line-of-sight path following of underactuated marine craft[J]. IFAC Proceedings Volumes, 2003, 36(21): 211–216
[6] OH S R, SUN J. Path following of underactuated marine surface vessels using line-of-sight based model predictive control[J]. Ocean Engineering, 2010, 37(2–3): 289–295
[7] 朱骋, 庄佳园, 张磊, 等. 无人水面艇自适应路径跟踪算法[J]. 导航与控制, 2019, 18(1): 44–50
[8] QIU B, WANG G, FAN Y, et al. Path following of underactuated unmanned surface vehicle based on trajectory linearization control with input saturation and external disturbances[J]. International Journal of Control Automation and Systems, 2020, 18(4): 1–12
[9] LIANG X, QU X, WAN L, et al. Three-dimensional path following of an underactuated auv based on fuzzy backstepping sliding mode control[J]. International Journal of Fuzzy Systems, 2017, 20: 640–649
[10] 沈智鹏, 景富盛. 欠驱动船舶路径跟踪神经元自适应迭代滑模控制[J]. 哈尔滨工程大学学报, 2019, 40(3): 489–494
[11] FOSSEN T I, LEKKAS A M. Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents[J]. International Journal of Adaptive Control and Signal Processing, 2017, 31(4): 445–463
[12] FOSSEN T I, PETTERSEN K Y, GALEAZZI R. Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces[J]. IEEE Transactions on Control Systems Technology, 2015, 23(2): 820–827
[13] SHEN C, SHI Y, BUCKHAM B. Integrated path planning and tracking control of an auv: a unified receding horizon optimization approach[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(99): 1163–1173
[14] 张力行. 欠驱动船舶路径规划及跟踪算法研究[D]. 上海: 上海交通大学, 2017.
[15] 曾国奇, 赵民强, 刘方圆, 等. 基于网格PRM的无人机多约束航路规划[J]. 系统工程与电子技术, 2016, 38(10): 2310–2316
[16] XUE Z, LIU J, W U Zhengxing, et al. Development and path planning of a novel unmanned surface vehicle system and its application to exploitation of qarhan salt lake[J]. Science China(Information Sciences), 2019, 62(8): 084202
[17] 刘陆. 欠驱动无人船的路径跟踪与协同控制[D]. 大连: 大连海事大学, 2018