针对自主水下机器人(AUV)在环境干扰下的三维轨迹跟踪问题,设计一种基于非线性干扰观测器(NDO)的反步滑模控制器。根据“云帆”AUV自身特点构建六自由度数学模型,设计NDO对环境干扰进行估计补偿。最后在反步法的基础上引入滑模控制,并加入NDO设计反步滑模控制器,并通过李雅普诺夫函数证明系统的稳定性。仿真结果表明,基于NDO的反步滑模控制器能够满足AUV在环境干扰下三维轨迹跟踪要求,且具有较好的鲁棒性。
Aiming at the problem of three-dimensional tracking of autonomous underwater vehicles under environmental interference, a backstepping sliding mode controller based on nonlinear interference observer is designed. Construct a six degrees of freedom mathematical model based on the characteristics of the Yunfan AUV. NDO is designed to compensate the environmental interference. Finally, sliding mode control is introduced on the basis of backstepping method, and NDO is added to design backstepping sliding mode controller, and the stability of the system is proved by Lyapunov function. The simulation results show that the backstepping sliding mode controller based on NDO can meet the requirements of 3D trajectory tracking of AUV under the environmental disturbance, and has good robustness.
2022,44(7): 82-87 收稿日期:2021-08-03
DOI:10.3404/j.issn.1672-7649.2022.07.016
分类号:TP242.6
基金项目:国家重点研发计划(2020YFC1521704)
作者简介:武建国(1980-),男,博士,研究员,研究方向为水下机器人平台、水下机器人自适应性控制、流场感知
参考文献:
[1] 黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215–231
HUANG Y, LI Y, YU J C, et al. Status and development trend ofAUV intelligence[J]. Robot, 2020, 42(2): 215–231
[2] 刘丽萍, 王红燕. 基于海流观测的欠驱动AUV自适应反演滑模轨迹跟踪[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(7): 745–753
LIU L P, WANG H Y. Adaptive inverse sliding mode trajectory tracking of underactuated AUV based on ocean current observation[J]. Journal of Tianjin University (natural science and engineering), 2020, 53(7): 745–753
[3] 杨泽文, 贾鹤鸣, 宋文龙, 等. 欠驱动AUV水平面轨迹跟踪的反步控制研究[J]. 机电工程, 2017, 34(11): 1338–1342
[4] 严浙平, 杨泽文, 贾鹤鸣, 等. 时变干扰下欠驱动AUV水平面轨迹跟踪的反步滑模控制[J]. 宇航总体技术, 2017, 1(4): 1–7
YAN Z P, YANG Z W, JIA H M, et al. Backstepping sliding mode co-ntrol for horizontal trajectory tracking of underactuated AUV under time-varying interference[J]. Astronautical General Technique, 2017, 1(4): 1–7
[5] 钟雨轩, 翁磊, 梁旭. 非完全对称欠驱动无人艇的自适应滑模轨迹跟踪控制[J]. 舰船科学技术, 2020, 42(17): 92–98
ZHONG Y X, WENG L, LIANG X. Adaptive sliding mode trajectory tracking control of a nonsymmetric underactuated unmanned ship[J]. Ship Science and Technology, 2020, 42(17): 92–98
[6] RAMEZANI-AL M R, SERESHKI Z T. A novel adaptive sliding mode controller design for tracking problem of an AUV in the horizontal plane[J]. International Journal of Dynamics and Control, 2019, 7(2): 679–689
[7] 王洪斌, 苏博, 王跃灵, 等. 基于粒子群优化的AUV定深跟踪有限时间控制[C]// 第37届中国控制会议论文集, 2018.
WANG H B, SU B, WANG Y L, et al. AUV fixed-depth tracking finit-e time control based on particle swarm optimization[C]//Proceedingsof the 37th Chinese Control Conference, 2018.
[8] 林荣鹏, 贾鹤鸣, 吴慧, 等. 基于反步法的AUV深度控制研究[J]. 科技创新与生产力, 2018, 4(5): 48–51
LIN R P, JIA H M, WU H, et al. Research on AUV depth control b-ased on backstepping method[J]. Science and Technology Innovationand Productivity, 2018, 4(5): 48–51
[9] 饶志荣, 董绍江, 王军, 等. 基于干扰观测器的AUV深度自适应终端滑模控制[J]. 北京化工大学学报(自然科学版), 2021, 48(1): 103–110
[10] ZHANG G C, HUANG H, QIN H D, et al. A novel adaptive second o-rder sliding mode path following control for a portable AUV[J]. Ocean Engineering, 2018, 151(151): 82–92
[11] 王金强, 王聪, 魏英杰, 等. 欠驱动AUV自适应神经网络反步滑模跟踪控制[J]. 华中科技大学学报(自然科学版), 2019, 47(12): 12–17
[12] 徐健, 汪慢, 乔磊, 等. 欠驱动UUV三维轨迹跟踪的反步动态滑模控制[J]. 华中科技大学学报(自然科学版), 2015, 43(8): 107–113
XU J, WANG M, QIAO L, et al. Backstepping dynamic sliding mode control for underactuated UUV 3D trajectory tracking[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(8): 107–113
[13] 周丽, 姜长生, 都延丽. 一种基于反步法的鲁棒自适应终端滑模控制[J]. 控制理论与应用, 2009, 26(6): 678–682
ZHOU L, JIANG C S, DU Y L. A robust adaptive terminal sliding mode control based on backstepping method[J]. Control Theory and Applications, 2009, 26(6): 678–682