提出一种新型的基于升力原理的正浮力航行器。该航行器工作于正浮力条件下, 基于升力原理,利用其搭载的机翼在航行中产生的负升力平衡其在水中的剩余浮力。阐述该航行器的组成结构、工作过程和工作原理, 设计内部控制电路并进行控制策略分析。将航行器样机制作并装配完成后, 开展湖上试验进行一系列性能测试。试验结果验证了其工作原理的合理性并表明其运动控制效果良好, 结构稳定,以及具备快速响应的能力。该航行器无需浮力调节装置, 结构简单, 对环境适应能力强, 安全性高,具有一定的先进性。
A new type of positive buoyancy vehicle based on the principle of lift is proposed. The aircraft works under positive buoyancy conditions, based on the principle of lift, and uses the negative lift generated by its wings during navigation to balance its remaining buoyancy in the water. The composition structure, working process and working principle of the aircraft are described, the internal control circuit is designed and the control strategy analysis is carried out. After the prototype of the aircraft was made and assembled, a lake test was carried out and a series of performance tests were carried out. The test results verify the rationality of its working principle and show that its motion control effect is good, the structure is stable, and the ability to respond quickly. The aircraft does not require buoyancy adjustment devices, has a simple structure, strong adaptability to the environment, high safety, and certain advancement.
2022,44(7): 88-93 收稿日期:2021-07-29
DOI:10.3404/j.issn.1672-7649.2022.07.017
分类号:U674.941
基金项目:上海科学技术委员会科研基金项目(20DZ1206600);水声对抗技术重点实验室基金项目(JCKY2020207CH03)
作者简介:韦帅(1995-),男,硕士研究生,主要研究方向为水下机器人运动控制
参考文献:
[1] Chelsea Technologies Group. SeaSoar II - World's leadi-ng oceanographic data gathering vehicle [EB/OL]. https://www.chelsea.co.uk/products/marine-science/towed-vehicles/seasoar.
[2] 刘晓民. 水下飞机——“深飞”家族潜水器[J]. 机器人技术与应用, 1998(1): 21
[3] 中国科学院沈阳自动化研究所. 升力型高速海洋机器人: CN201611189141.8[P]. 2017-05-31.
[4] 浙江大学. 一种固定翼水下无人机: CN201711074388. X[P]. 2018-04-17.
[5] 刘开周. 基于升力原理的深海高速潜水器研发与试验[J]. 中国科技成果, 2017, 18(11): 22–23
[6] WANG Zhi-guang, WEI Zhao-yu, TENG Yue-hui, et al. Research and design of a new hybrid energy positive buoyancy autonomous vehicle[C]//11th International Conference on Information Science and Technology (ICIST), Chengdu, China, May 21-23, 2021: 411-415.
[7] 王雪斌, 张世童, 张宏伟, 等. 负浮力水下航行器概念设计及动力学仿真[J]. 中国海洋平台, 2020, 35(6): 1–8+13
[8] 曾俊宝, 李硕, 李一平, 等. 便携式自主水下机器人控制系统研究与应用[J]. 机器人, 2016, 38(1): 91–97
[9] 应思斌. 重于水型AUV运动特性分析与控制仿真研究[D]. 上海: 上海交通大学, 2012.