针对柴油机电子调速器设计开发中需解决的高实时性模型建模问题,对基于RBF神经网络的柴油机建模方法进行研究,在Matlab/Simulink环境设计辨识模型和算法,以PA6柴油机为例进行了模型辨识实验验证。结果表明,本文方法具有逼近精度高、响应速度快等优点。
For electronic governor of diesel engine design and development of model-based modeling problem need to solve the high real-time capability of model, the modeling method for diesel engine based on RBF neural network were studied. Under the environment of Matlab/Simulink, the identification model and the algorithm are designed. For PA6 diesel engine as an example for the model identification test, shows that the method has the advantages of high approximation accuracy and short response speed.
2022,44(7): 118-121 收稿日期:2021-03-06
DOI:10.3404/j.issn.1672-7649.2022.07.023
分类号:U672
基金项目:国家自然科学基金资助项目(51579242)
作者简介:吴越(1988-),男,硕士研究生,研究方向为舰船动力装置自动化及仿真技术
参考文献:
[1] 刘金琨, 沈晓蓉, 赵龙. 系统辨识理论及MATLAB仿真[M]. 北京: 电子工业出版社, 2013: 120–121.
[2] 刘金琨. RBF神经网络自适应控制及MATLAB仿真[M]. 北京: 清华大学出版社, 2018: 18–20.
[3] 石勇, 宋恩哲. 船用柴油机转速控制系统辨识及自适应控制技术仿真研究[J]. 系统仿真学报, 2014, 26(5): 1078–1083,1101
[4] 钟婧佳, 赵洪, 佟泽友, 等. 基于RBF神经网络的控制器参数优化设计研究[J]. 导弹与航天运载技术, 2020, 374(3): 76–80
[5] 张惠臣, 那健, 翟春平. 基于卷积神经网络的声信标信号识别方法[J]. 舰船科学技术, 2021, 43(1): 150–153
[6] 冯子凯. 基于结构自适应滤波方法的非线性系统辨识[D]. 郑州: 河南大学, 2020.
[7] KARAMI K, FATEHI P, YAZDANI A. On-line system identification of struc-tures using wavelet-Hilbert transform and sparse com-ponent analysis[J]. Comput Aided CIV INF. 2020: 1–17.
[8] XU Qiangrong, SHENG Zhichao, FANG Yong, et al. Measurement matrix optimization for compressed sensing system with constructed dictionary via takenaka–malmquist functions[J]. Sensors 2021, 21(4): 1229–1229.