为解决入侵信息对于船舶通信网络造成的安全性问题,准确定位入侵节点所处位置,设计基于大数据分析的船舶网络入侵检测系统。按照终端检测网络的布局形式,连接入侵信息解析模块,利用AMD检测主机提取存储于解析模块中的信息参量,完成船舶网络入侵检测系统的硬件设备配置。在大数据统筹指标定义表达式的支持下,联合船舶通信网络中数据信息参量的传输强度,计算入侵信息特征参量的具体数值,再根据已知的检测权限量差条件,确定船舶通信数据的入侵强度,完成基于大数据分析的检测软件设计。结合相关硬件设备结构,实现基于大数据分析的船舶网络入侵检测系统搭建。实验结果显示,随着大数据分析技术的应用,入侵信息对于船舶通信网络运行安全的威胁性得到较好控制,表明这种技术策略能够辅助船舶网络主机精准定位入侵节点所处位置。
In order to solve the security problem caused by intrusion information to ship communication network and accurately locate the location of intrusion node, a ship network intrusion detection system based on big data analysis is designed. According to the layout form of terminal detection network, connect the intrusion information analysis module, extract the information parameters stored in the analysis module by using amd detection host, and complete the hardware equipment conFiguration of ship network intrusion detection system. With the support of the definition expression of big data overall planning index, combined with the transmission strength of data information parameters in ship communication network, calculate the specific value of intrusion information characteristic parameters, and then determine the intrusion strength level of ship communication data according to the known detection authority difference conditions, complete the detection software design based on big data analysis, combined with the structure of relevant hardware equipment, realize the construction of ship network intrusion detection system based on big data analysis. The experimental results show that with the application of big data analysis technology, the threat of intrusion information to the operation security of ship communication network has been well controlled, which shows that this technical strategy can assist the ship network host to accurately locate the location of intrusion nodes.
2022,44(7): 166-169 收稿日期:2021-12-25
DOI:10.3404/j.issn.1672-7649.2022.07.034
分类号:TP309
作者简介:卢金清(1987-),女,硕士,馆员,主要研究方向为计算机科学与技术及档案管理
参考文献:
[1] 杨晨. 桥梁混凝土结构无损检测中弹性波CT检测技术的应用分析[J]. 工程技术研究, 2021, v.6(104): 34–36+46
[2] 朱海鹏, 赵磊, 秦昆, 等. 基于大数据分析的电力监控网络安全主动防护策略研究[J]. 电测与仪表, 2020, 57(21): 133–139
[3] 李晓会, 陈潮阳, 伊华伟, 等. 基于云计算和大数据分析的大规模网络流量预测[J]. 吉林大学学报(工学版), 2021, 51(3): 1034–1039
[4] 张吉, 赵夙, 朱晓荣. 基于大数据挖掘的LTE网络重叠覆盖优化方法[J]. 南京邮电大学学报(自然科学版), 2020, 40(6): 92–99
[5] 邓睿哲, 陈启浩, 陈奇, 等. 遥感影像船舶检测的特征金字塔网络建模方法[J]. 测绘学报, 2020, 49(6): 787–797
[6] 肖枚, 凌伟程, 刘亚波, 等. 基于高分三号卫星的实时船舶检测算法[J]. 科学技术与工程, 2021, 21(19): 8057–8064
[7] 周慧, 刘振宇, 陈澎. 利用改进特征金字塔模型的SAR图像多目标船舶检测[J]. 电讯技术, 2020, 60(8): 896–901
[8] 包壮壮, 赵学军. 基于EfficientDet的无预训练SAR图像船舶检测器[J]. 北京航空航天大学学报, 2021, 47(8): 1664–1672
[9] 佟禹, 索继东, 任硕良. 基于显著性候选区域的遥感船舶检测算法[J]. 电光与控制, 2021, 28(2): 48–52
[10] 姜苗苗, 史国友, 许拴梅, 等. 基于自适应K均值聚类和霍夫变换的船舶干舷视觉检测[J]. 上海海事大学学报, 2021, 42(2): 34–39