为了更好的识别船舶图像信息,提出基于卷积神经网络的船舶图像增强方法,利用卷积神经网络技术对船舶图像特征进行采集和建模,并对采集到的数据进行降噪,再根据图像颜色特征进行图像缺陷修复和图像的逆向恢复处理,从而获得高品质的船舶图像。最后通过实验证实,卷积神经网络能够有效改善船舶图像的显示质量,满足传播图像增强的设计目标。
In order to better identify the ship image information, a ship image enhancement method based on convolution neural network is proposed. The convolution neural network technology is used to model the ship image features, collect the ship operation image, reduce the noise of the collected data, and then repair the image defects and reverse restore the image based on the image color features, So as to obtain high-quality ship images. Finally, experiments show that the proposed ship image enhancement method based on convolutional neural network can effectively improve the display quality of ship image and meet the design goal of propagation image enhancement.
2022,44(7): 186-189 收稿日期:2021-08-24
DOI:10.3404/j.issn.1672-7649.2022.07.039
分类号:TP334
基金项目:山西省科技创新团队项目(201805D131008)。
作者简介:陈燕(1982-),女,博士,讲师,研究方向为信号与信息处理及图像处理
参考文献:
[1] 郭超. 工程技术研究中心的网络信息管理系统设计[J]. 微型电脑应用, 2022, 38(1): 4–6
[2] 谭宇璇, 樊绍胜. 基于图像增强与深度学习的变电设备红外热像识别方法[J]. 中国电机工程学报, 2021, 41(23): 8–11
[3] 焦腾云, 王明泉, 张俊生, 等. 基于小波分析和伪彩色处理的轮毂图像增强[J]. 自动化与仪表, 2020, 35(1): 5–8
[4] 田会娟, 蔡敏鹏, 关涛, 等. 基于YCbCr颜色空间的Retinex低照度图像增强方法研究[J]. 光子学报, 2020, 49(2): 12–15