本文主要研究水下直升机(autonomous underwater helicopters, AUH)的首向无模型控制问题。AUH圆碟形的外形使其具有灵活的首向机动性,但也使AUH的首向易受外部扰动和模型失配的影响而出现振荡和超调。针对AUH的首向稳定控制问题,提出一种无模型参数自适应滑模控制方法。首先,利用系统输入/输出测量数据建立动态线性化数据模型,基于离散无抖振滑模控制算法设计无模型自适应滑模控制器。其次,分析了AUH的主要动力学参数发生大范围变化时,使用无模型自适应滑模控制器获得的控制输出存在超调和振荡的原因,提出一种控制器参数自适应调节律,解决了控制输出的超调和振荡问题。在被控对象参数大范围变化的情况下,所提出方法获得了具有一致性的首向控制效果。该方法仅需要首向控制输入/输出测量数据,实现了AUH的首向无模型控制。通过仿真和湖上试验,验证了方法的可行性和有效性。
The model-free heading control method for autonomous underwater helicopters(AUH) is addressed. The flexible heading maneuverability is obtained by the disk-shape of AUH,but yaw oscillation and overshoot are more likely to occur due to external disturbance and model mismatch. To solve the heading stability control problem, an model-free parameter adaptive sliding mode heading control method for AUH is proposed. Firstly, the dynamic linearization data model is established by using the input/output measurements of the system,and the controller is designed based on chattering-free discrete-time sliding mode control algorithm. Secondly, the reason of overshoot and oscillation of the control output, when the main dynamic parameters of AUH change in a wide range, is analyzed. An adaptive controller parameter regulation law is proposed to solve the problem of overshoot and oscillation of control output. When the parameters of the controlled plant vary in a large range, the consistent heading control effect is obtained by the proposed method. Only the input/output measurement data of heading control is needed by the controller, and the model-free heading control of AUH is realized. The feasibility and effectiveness of the method are verified by simulations and lake experiments.
2022,44(10): 73-79 收稿日期:2021-07-22
DOI:10.3404/j.issn.1672-7649.2022.10.014
分类号:TP3-05
基金项目:国家重点研发计划(2017YFC0306100);中国科学院战略性先导科技专项(XDA22040103)
作者简介:石凯(1981-),男,硕士,副研究员,研究方向为水下机器人控制技术
参考文献:
[1] JI D X, CHEN C W, CHEN Y. Autonomous underwater helicopters AUV with disc-shaped design for deepwater agility[J]. Sea Technology, 2018, 59(8): 25–27
[2] LIN Y, HUANG Y, ZHU H, et al. Simulation study on the hydrodynamic resistance and stability of a disk-shaped autonomous underwater helicopter[J]. Ocean Engineering, 2021, 219: 108385
[3] 杨超, 张铭钧, 吴珍臻, 等. 作业型水下机器人纵、横倾姿态自适应区域控制方法[J]. 机器人, 2021, 43(2): 224–233
YANG Chao, ZHANG Mingjun, WU Zhenzhen, et al. Adaptive region control method of the pitch and roll attitudes for operating autonomous underwater vehicle[J]. ROBOT, 2021, 43(2): 224–233
[4] WANG J Q, WANG C, WEI Y J, et al. Three-dimensional path following of an underactuated AUV based on neuro-adaptive command filtered backstepping control[J]. IEEE Access, 2018(6): 74355–74365
[5] GHARESI N, EBRAHIMI Z, FOROUZANDEH A, et al. Extended state observer-based backstepping control for depth tracking of the underactuated AUV[C]//2017 5th International Conference on Control, Instrumentation, and Automation. Shiraz, Iran: IEEE, 2017: 354-358.
[6] TANAKITKORN K, WILSON P A, TURNOCK S R, et al. Sliding mode heading control of an overactuated, hover-capable autonomous underwater vehicle with experimental verification[J]. Journal of Field Robotics, 2018, 35(3): 396–415
[7] ZHANG Y Y, GAO L E, LIU W D, et al. Research on control method of AUV terminal sliding mode variable structure[C]//2017 International Conference on Robotics and Automation Sciences. Hong Kong, China: IEEE, 2017: 88-93.
[8] MAT-NOH M, MOHD-MOKHTAR R, ARSHAD M R, et al. Review of sliding mode control application in autonomous underwater vehicles[J]. Indian Journal of Geo-Marine Sciences, 2019, 48(7): 973–984
[9] HOU Z, H G, LEWIS F L. Data-Driven Control and Learning Systems[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4070–4075
[10] 侯忠生, 金尚泰. 无模型自适应控制: 理论与应用[M].北京: 科学出版社, 2013.
[11] LIAO Y L, DU T P, JIANG Q Q. Model-free adaptive control method with variable forgetting factor for unmanned surface vehicle control[J]. Applied Ocean Research, 2019: 93
[12] LI H, HE B, YIN Q, et al. Fuzzy optimized MFAC based on ADRC in AUV heading control[J]. Electronics, 2019. 8(6).
[13] LI X, REN C, MA S, et al. Compensated model-free adaptive tracking control scheme for autonomous underwater vehicles via extended state observer[J]. Ocean Engineering, 2020, 217: 107976
[14] XU D Z, SHI Y, JI Z C. Model-free adaptive discrete-time integral sliding-mode-constrained-control for autonomous 4WMV parking systems[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 834–843
[15] GAO H, MA G F, LV Y Y, et al. Forecasting-based data-driven model-free adaptive sliding mode attitude control of combined spacecraft[J]. Aerospace Science and Technology, 2019, 86: 364–374
[16] WANG W, RANA J M. Model-free-adaptive-based data-driven method for three-axis gimbal control[J]. Measurement & Control, 2020, 53(7–8): 1512–1517
[17] 姚文龙, 王加利, 庞震, 等. 吊舱推进电机的无模型自适应滑模矢量控制[J]. 交通运输工程学报, 2020, 20(3): 72–79
YAO Wen-long, WANG Jia-li, PANG zhen, et al. Model-free adaptive sliding mode vector control for podded propulsion motor[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 72–79
[18] 王天. 新型碟形水下机器人及其航姿预测控制系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
WANG Tian. Researches on a novel disk-like underwater robot and attitude predictive control[D]. Harbin: Harbin Engineering University, 2013. .
[19] WANG Z K, LIU X, HUANG H c, et al. Development of an Autonomous Underwater Helicopter with high maneuverability[J]. Applied Sciences-Basel, 2019, 9(19): 19
[20] DU H, YU X, CHEN M Z Q, et al. Chattering-free discrete-time sliding mode control[J]. Automatica, 2016, 68: 87–91
[21] CHEN C W, WANG T X, FENG Z, et al. Simulation research on water-entry impact force of an autonomous underwater helicopter[J]. Journal of Marine Science and Technology, 2020, 25(4): 1166–1181