研究基于GA-PSO融合算法的舰船轮廓CAD模型参数优化方法,提升舰船轮廓CAD模型参数优化效果,减轻舰船结构质量。以舰船抗爆性能不变为前提,最轻舰船结构质量为目标函数,几何约束、总纵弯曲约束与应力约束为约束条件,建立舰船轮廓CAD模型参数优化模型。通过GA-PSO融合算法求解优化模型,获取最轻舰船结构质量以及对应的舰船轮廓CAD模型优化参数。实验证明:该方法可有效优化舰船轮廓CAD模型参数,令舰船结构质量下降11.43%;参数优化后的舰船应力有所提升,但始终未超过允许的最大应力值,即该方法可在应力允许范围内,最大程度降低舰船结构质量,具备较优的参数优化效果;在不同荷载工况时,该方法均具备较高的内板吸能,即抗爆性能较优。
The parameter optimization method of ship contour CAD model based on GA-PSO fusion algorithm is studied to improve the parameter optimization effect of ship contour CAD model and reduce the quality of ship structure. On the premise that the anti-detonation performance of the ship is not changed, the weight of the lightest ship structure is the objective function, and the geometric constraints, longitudinal bending constraints and stress constraints are the constraints, the ship contour CAD model parameter optimization model is established. Ga-pso fusion algorithm was used to solve the optimization model, and the structural quality of the lightest ship and the corresponding optimization parameters of the ship contour CAD model were obtained. Experimental results show that this method can effectively optimize the parameters of ship contour CAD model and reduce the ship structure quality by 11.43%. After parameter optimization, the ship stress is improved to some extent, but never exceeds the maximum allowable stress value, that is, the method can reduce the ship structure quality to the maximum extent within the allowable stress range, and has a better parameter optimization effect. Under different load conditions, the method has higher energy absorption of inner plate, that is, better anti-explosion performance.
2022,44(13): 45-48 收稿日期:2022-02-08
DOI:10.3404/j.issn.1672-7649.2022.13.010
分类号:U661.4
基金项目:广东省教学质量工程建设项目课题(2019012)
作者简介:单文举(1983-),男,硕士,讲师,研究方向为数控加工、多轴加工及制造业信息化
参考文献:
[1] 卢雨, 顾朱浩, 王瑞宇. 基于CAD与CATIA二次开发的船体快速建模方法[J]. 中国舰船研究, 2020, 15(6): 121–127
LU Yu, GU Zhuhao, WANG Ruiyu. Rapid hull modeling methodology based on CAD and CATIA secondary development[J]. Chinese Journal of Ship Research, 2020, 15(6): 121–127
[2] 徐思豪, 杜文磊, 彭亚康, 等. 基于CATIA V6的船舶结构有限元网格方法[J]. 船舶工程, 2019, 41(8): 26–30
XU Sihao, DU Wenlei, PENG Yakang, et al. Method for Generating Ship Structure Finite Element Mesh Based on CATIA V6[J]. Ship Engineering, 2019, 41(8): 26–30
[3] 焦甲龙, 卿川东, 任慧龙, 等. 基于FEM-BEM法考虑弹振效应的超大型船舶结构疲劳损伤分析[J]. 中国造船, 2019, 60(2): 117–130
JIAO Jialong, QING Chuandong, REN Huilong, et al. A Hybrid FEM-BEM Approach to Structural Fatigue Damage Analysis of Ultra-large Ship Considering Springing Effects[J]. Shipbuilding of China, 2019, 60(2): 117–130
[4] 王一镜, 罗广恩, 王陈阳, 等. 基于自适应变异粒子群算法的船舶结构优化方法[J]. 中国舰船研究, 2022, 17(2): 156–164
WANG Yijing, LUO Guangen, WANG Chenyang, et al. Ship structural optimization method based on daptive mutation particle swarm algorithm[J]. Chinese Journal of Ship Research, 2022, 17(2): 156–164
[5] 周凤杰. 船舶避碰的粒子群-遗传(PSO-GA)的混合优化算法研究[J]. 船舶力学, 2021, 25(07): 909–916
ZHOU Fengjie. Research on hybrid optimization algorithm of particle swarm-genetic (PSO-GA) for ship collision avoidance[J]. Journal of Ship Mechanics, 2021, 25(07): 909–916
[6] 郭天奇, 夏益美, 王福花, 等. 基于混合动态罚函数改进协同优化算法的船舶结构静动力学优化设计[J]. 振动与冲击, 2019, 38(20): 70–76
GUO Tianqi, XIA Yimei, WANG Fuhua, et al. An improved collaborative optimization algorithm of ship structures' static and dynamic subject based on the mixed and dynamic penalty function[J]. Journal of Vibration and Shock, 2019, 38(20): 70–76
[7] 朱俊侠, 吴嘉蒙, 蔡诗剑, 等. 基于拓扑优化方法的船体支柱布局优化设计[J]. 海洋工程, 2019, 37(4): 70–79
ZHU Junxia, WU Jiameng, CAI Shijian, et al. Optimal arrangement of ship pillars based on topology optimization method[J]. The Ocean Engineering, 2019, 37(4): 70–79
[8] 苏绍娟, 张祥, 王天霖, 等. 多工况应力约束下多用途船货舱结构优化[J]. 船海工程, 2020, 49(1): 52–55+60
SU Shaojuan, ZHANG Xiang, WANG Tianlin, et al. Optimization of Cargo Hold Structure of a Multipurpose Ship under Multiple Load Conditions Stress Constraints[J]. Ship & Ocean Engineering, 2020, 49(1): 52–55+60
[9] 马寒阳, 董金善. 冲击载荷作用下LNG燃料罐防波板参数多目标优化[J]. 船舶力学, 2021, 25(9): 1251–1259
MA Hanyang, DONG Jinshan. Multi-objective optimization of baffle structural parameters in LNG fuel tank under impact load[J]. Journal of Ship Mechanics, 2021, 25(9): 1251–1259