为分析并计算船舶壳体结构在冲击状态下的塑性损伤情况,以双壳体结构船舶作为试验模型,通过应用精细积分算法精确计算冲击程度,以此为依据,计算船舶壳体结构疲劳损失,并采用MSC/PATRAN有限元模型对试验船舶模型进行模拟,分析并计算船舶壳体结构塑性损伤情况。试验结果显示:该方法可获取精确的冲击力计算结果,为结构的塑性损伤计算提供依据;浪向角会影响冲击影响系数;垂直单向受到冲击,应变达到1.0时,应力值最高,达到210 N左右;船舶底部在爆炸冲击的影响下,其产生的应力从冲击侧开始向另一侧传播,当爆炸冲击距离为10 m时,塑性损伤结果值最大,与实际结果一致。
In order to analyze and calculate the plastic damage of the ship shell structure under the impact state, the double shell structure ship is taken as the test model, and the impact degree is accurately calculated by using the precise integration algorithm. Based on this, the fatigue loss of the ship shell structure is calculated. The msc/ Patran finite element model is used to simulate the test ship model, and the plastic damage of the ship shell structure is analyzed and calculated. The test results show that this method can obtain accurate impact force calculation results and provide a basis for plastic damage calculation of structures. The wave direction angle will affect the impact coefficient; When the strain reaches 1.0, the stress value is the highest, reaching about 210 N. Under the influence of explosion impact, the stress generated at the bottom of the ship propagates from the impact side to the other side. When the explosion impact distance is 10 m, the plastic damage result is the largest, which is consistent with the actual result.
2022,44(13): 49-52 收稿日期:2022-01-24
DOI:10.3404/j.issn.1672-7649.2022.13.011
分类号:U661
作者简介:金雪(1989-),女,博士研究生,讲师,研究方向为运筹学与控制论及博弈论
参考文献:
[1] 吴昊, 刘维勤, 胡雨晨. 舰船加筋板结构的圆孔形穿甲损伤识别方法[J]. 中国舰船研究, 2020, 15(2): 88–94
WU Hao, LIU Weiqin, HU Yuchen. Recognition method for stiffened plate structures of ship with round hole shaped armor piercing damage[J]. Chinese Journal of Ship Research, 2020, 15(2): 88–94
[2] 李永胜, 王纬波, 张彤彤. 复合材料地效翼船结构设计计算方法研究[J]. 中国舰船研究, 2020, 15(4): 73–81
LI Yongsheng, WANG Weibo, ZHANG Tongtong. Investigation of structural design and analysis method for composite wing-in-ground craft[J]. Chinese Journal of Ship Research, 2020, 15(4): 73–81
[3] 伍友军, 周博, 崔海鑫, 等. 穿舱爆炸下纵向箱型舰船结构抗损能力分析[J]. 船海工程, 2021, 50(5): 69–72+77
WU You-jun, ZHOU Bo, CUI Haixin, et al. Damage Resistance Analysis of Longitudinal Box Ship Structure under Penetration Explosion[J]. Ship & Ocean Engineering, 2021, 50(5): 69–72+77
[4] 邱昌贤, 黄进浩, 秦天, 等. 内肋骨长舱段塑性总体稳定性计算方法研究[J]. 船舶力学, 2021, 25(9): 1232–1238
QIU Chang-xian, HUANG Jin-hao, QIN Tian, et al. Theoretical research on calculation methods for plastic general buckling stability of long cylindrical pressure hull with internal ribs[J]. Journal of Ship Mechanics, 2021, 25(9): 1232–1238
[5] 甄春博, 王天霖, 于鹏垚. 基于直接计算的三体船结构疲劳强度影响因素分析[J]. 中国舰船研究, 2017, 12(3): 86–90
ZHEN Chunbo, WANG Tianlin, Yu Pengyao. Influencing factor analysis for direct calculation of trimaran structure's fatigue strength[J]. Chinese Journal of Ship Research, 2017, 12(3): 86–90
[6] 苗润, 王伟力, 吴世永, 等. 炸药动态起爆对舰船上下邻舱结构的毁伤效应研究[J]. 海军工程大学学报, 2020, 32(1): 95–101
MIAO Run, WANG Wei-li, WU Shi-yong, et al. Damage effect of dynamic detonation on upper and lower cabin structures of ships[J]. Journal of Naval University of Engineering, 2020, 32(1): 95–101
[7] 李典, 郑羽, 陈长海, 等. 空爆载荷下舰船典型结构损伤研究进展[J]. 船舶力学, 2020, 24(4): 543–557
LI Dian, ZHENG Yu, CHEN Chang-hai, et al. Review on damage of typical ship protective structures under explosion load[J]. Journaof Ship Mechanics, 2020, 24(4): 543–557
[8] 张婧, 徐栋梁, 许文强. 考虑空化效应的水下爆炸舰船结构响应研究[J]. 华中科技大学学报(自然科学版), 2020, 48(8): 115–120+132
ZHANG Jing, XU Dongliang, XU Wenqiang. Research on response of ship structure subjected to underwater explosion cavitation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(8): 115–120+132
[9] 刘念念, 任少飞, 宋丹丹, 等. 聚能射流对舰船舷侧结构的破坏毁伤研究[J]. 船舶力学, 2020, 24(8): 1072–1080
LIU Nian-nian, REN Shao-fei, SONG Dan-dan, et al. Damage research of shaped charge jet on warship broadside[J]. Journal of Ship Mechanics, 2020, 24(8): 1072–1080