针对传统PID在ROV定深运动中控制效果不佳的问题,提出一种基于PSO优化的LADRC控制方法对ROV定深运动进行控制。对八推进器ROV进行了动力学与运动学分析,得到定深运动数学模型。在Matlab中使用基于PSO优化的LADRC控制器对ROV的定深运动进行仿真,与传统PID控制方法、基于经验法调参LADRC控制方法进行对比分析,并搭建定深测试平台,读取深度航行数据。仿真结果表明:相较于串级PID,串级LADRC超调量减少了37%,调节时间减少了6.25%;PSO优化后的串级LADRC和串级LADRC相比,超调量减少了60%。使用PSO算法优化后的LADRC控制方法超调量小,控制效率更高。
For the problem of the problem of poor control effect of traditional PID in ROV depth-keeping,this paper presents a LADRC method based on PSO optimization to control ROV fixed depth motion. to obtain the mathematical model of the constant depth motion, the dynamics and kinematics of eight-thruster ROV are analyzed. Then, the LADRC controller based on PSO optimization is designed and the depth-fixed motion of ROV is simulated in the simulink module of Matlab, which is compared with the traditional PID control method and the LADRC control method based on empirical method. The results show that compared with cascade PID, cascade LADRC overshoot is reduced by 37 % and regulation time is reduced by 6.25 %. The overshoot of cascade LADRC optimized by PSO is reduced by 60 % compared with cascade LADRC. The LADRC control method optimized by PSO has smaller overshoot and higher control efficiency.
2022,44(13): 111-116 收稿日期:2021-06-19
DOI:10.3404/j.issn.1672-7649.2022.13.025
分类号:TP183
基金项目:国家自然科学基金资助项目(51864015)
作者简介:唐军(1978-),男,硕士,副教授,主要从事水下机器人、流体机械等研究
参考文献:
[1] Luis GovindaGarcía-Valdovinos, Fonseca-Navarro F, Aizpuru-Zinkunegi J, et al. Neuro-sliding control for underwater ROV's subject to unknown disturbances[J]. Sensors, 2019, 19(13): 2943
[2] 申雨轩. 基于自抗扰控制器的水下机器人控制[D]. 大庆: 东北石油大学, 2015.
[3] 邵克勇, 申雨轩. 小波神经网络自抗扰控制器在水下机器人深度控制中的应用[J]. 计算机与现代化, 2015(6): 23–26
[4] GAO Z. Scaling and bandwidth-parameterization based controller tuning[C]//IEEE, 2003.
[5] 陈东军, 吴家鸣. 带缆水下机器人控制仿真模拟与水动力分析[J]. 船舶力学, 2020, 24(2): 170–178
[6] 漆小舟, 缪爱琴, 万德成. 水下潜器航行水动力导数CFD计算[J]. 水动力学研究与进展(A辑), 2018, 33(3): 297–304
[7] 高婷, 庞永杰, 王亚兴, 等. 水下航行器水动力系数计算方法[J]. 哈尔滨工程大学学报, 2019.
[8] HU Jin hui, HU Da bin, XIAO Jian bo. Research on the method of numerical calculation for hydrodynamic parameters of underwater vehicle[J]. Applied Mechanics and Materials, 2014, 2983: 121–126
[9] 李杰, 齐晓慧, 万慧, 等. 自抗扰控制: 研究成果总结与展望[J]. 控制理论与应用, 2017, 34(3): 281–295
[10] 王震. 缆控水下机器人水动力建模与运动控制研究[D]. 济南: 山东大学, 2019.
[11] 韩京清. 自抗扰控制技术[J]. 前沿科学, 2007(1): 24–31
[12] Esperanza García-Gonzalo, Juan Luis Fernández-Martínez. Particle swarm optimization and inverse problems[M]// Combining Soft Computing and Statistical Methods in Data Analysis. 2010.
[13] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]// Mhs95 Sixth International Symposium on Micro Machine & Human Science. IEEE, 2002.
[14] SHI Y . A modified particle swarm optimizer[C]// Proc of IEEE Icec Conference. 1998.
[15] 尹晖, 熊治国, 高翔, 等. 基于PSO的自抗扰飞行控制律参数优化方法[J]. 空军工程大学学报(自然科学版), 2013, 14(3): 19–22+32