为了解决船载多波束声呐的姿态稳定问题,设计一款双自由度水下云台。在保留传统水下云台定位模式的基础上,通过增加自适应模式来补偿波浪对声呐姿态的影响,并提出了阶梯速度PID自适应控制方法。根据距离目标角度的大小选择匹配的速度梯度,引入PID对水下云台实时调节,通过自身调整使其稳定在保持角度。水下模拟实验结果表明:定位模式下,水下云台2个自由度均能以18°/s的速度快速稳定到达目标角度,角度误差为0.4°;自适应模式下,搭载声呐的俯仰自由度能在较短的时间内稳定在保持角度,保持误差为1°,证明了控制方法的有效性。
In order to solve the attitude stabilization problem of shipborne multi-beam sonar, a two-degree-of-freedom underwater pan-tilt is designed. On the basis of retaining the traditional underwater pan-tilt positioning mode, an adaptive mode was added to compensate the influence of wave on sonar attitude, and a step velocity PID adaptive control method was proposed. In this method, a matching velocity gradient is selected according to the angle of distance from the target, and then PID is introduced to adjust the underwater pan-tilt in real time, so that it can maintain a specific angle relative to the underwater pan-tilt through self-adjustment. According to the results of the underwater simulation experiment, both the two degrees of freedom of the underwater pan-tilt can reach the target angle at a speed of 18°/s, and the angle error is 0.4°. In the adaptive mode, the pitch degree of freedom with sonar can be stabilized at the hold angle in a short time, and the hold error is 1°, which proves the effectiveness of the control method.
2022,44(14): 89-94 收稿日期:2021-09-10
DOI:10.3404/j.issn.1672-7649.2022.14.020
分类号:TP13
基金项目:天津市科技计划项目(18ZXRHGX00020);天津市科技特派员项目(19JCTPJC52100)
作者简介:王晓鸣(1981-),男,博士,副教授,主要从事机器人、嵌入式控制系统开发等方面的教学与科研工作
参考文献:
[1] 宫世杰, 郭乔进, 梁中岩, 等. 一种基于飞行元数据的无人机云台控制方法[J]. 科学技术创新, 2020, 4(34): 50–51
GONG Shi-jie, GUO Qiao-jin, LIANG Zzhong-yan, et al. A control method of unmanned aerial ehicle based on flight metadata[J]. Science and Technology Innovation, 2020, 4(34): 50–51
[2] 魏雅君, 高凤强, 陈冠峰, 等. 云台稳定性分析及结构优化[J]. 机械设计与研究, 2018, 34(5): 57–60
[3] 陈杏源. 融合Camshift和粒子滤波算法的云台目标跟踪系统设计[D]. 广州: 华南理工大学, 2016.
[4] 王小平. X舵AUV控制分配优化与容错控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[5] 陈宣成, 郭威, 周悦, 等. 全海深载人深潜器水下云台控制系统的研究与设计[J]. 制造业自动化, 2019, 41(12): 18–21+26
[6] 石领先, 焦园圆. 多旋翼无人机增稳云台的结构设计[J]. 滨州学院学报, 2020, 36(6): 11–15
[7] 林峰, 马翰廷. 机载三轴云台抗干扰方法分析[J]. 现代农机, 2020, 4(5): 30–31
[8] 赵炯, 谢正东, 周奇才, 等. 二自由度云台控制系统设计及控制方法的研究[J]. 机械工程与自动化, 2020, 4(6): 21–24
ZHAO Jiong, XIE Zheng-dong, ZHOU Qi-cai, et al. Design of control system and research on control method of ptz with two degrees of freedom[J]. Mechanical Engineering and Automation, 2020, 4(6): 21–24
[9] 闫磊, 王萌, 朱烨繁. 双目四自由度视觉云台模糊自适应PID目标跟踪控制[J]. 控制工程, 2021, 28(5): 1–8
YAN Lei, WANG Meng, ZHU Ye-fan. Binocular 4-DOF vision PTZ fuzzy adaptive PID target tracking control[J]. Control Engineering of China, 2021, 28(5): 1–8
[10] HESHMATI-ALAMDARI S, NIKOU A, KYRIAKOPOULOS K J, et al. A robust force control approach for underwater vehicle manipulator systems[J]. International Federation of Automatic Control, 2021, 50(1): 11197–11202
[11] BORLAUG I, SVERDRUP-THYGESON J, PETTERSEN K Y, et al. Combined kinematic and dynamic controlof an underwater swimming manipulator[J]. International Federation of Automatic Control, 2019, 52(21): 8–13
[12] SVERDRUP-THYGESON J, KELASIDI E, PETTERSEN K Y, et al. A control framework for biologically inspiredunderwater swimming manipulators equipped with thrusters[J]. International Federation of Automatic Control, 2016, 49(23): 89–96
[13] SATJA S, JOSEPH C, EDIN O, et al. Underwater manipulators: a review[J]. Ocean Engineering, 2018, 163: 431–450
[14] 刘喜藏, 林皓, 张玲. 航母在不同海况下的运动仿真研究[C]// 2020中国航空工业技术装备工程协会年会论文集, 《测控技术》杂志社, 2020: 324–327.