针对运用智能算法对船舶舱室进行布局的过程中,主要研究方向聚焦于对现有智能算法的改进,但是忽略了初始解的生成问题,提出在二维空间中关于船舶机舱布局初始解的生成方法。分别利用遗传算法、粒子群算法以及量子粒子群算法对机舱设备进行布置,并对布置后的结果进行比较。结果表明,在运用智能算法求解布局问题时,运用不同初始解的生成方法,得到的智能算法优劣性不同。在本文提出的初始解生成方法前提下,相较于遗传算法和粒子群算法,量子粒子群算法具有更强的适用性。研究结果可为船舶舱室的布置和设计提供参考方案。
In the process of using intelligent algorithm for ship cabin layout, the main research direction focuses on the improvement of existing intelligent algorithm, but ignores the problem of generating initial solution. Referring to the way of dividing layout space in three-dimensional packing problem, this paper proposed a method for generating initial solution of ship cabin layout in two-dimensional space. Genetic algorithm (GA), particle swarm optimization algorithm (PSO) and quantum particle swarm optimization algorithm (QPSO) were used to arrange the cabin equipment. Compared with the results referred to other research conclusions, the results showed that the advantages and disadvantages of the intelligent algorithm are different when using different initial solution generation methods to solve the layout problem. Compared with genetic algorithm and particle swarm optimization algorithm, quantum particle swarm optimization algorithm had stronger applicability. The research results could provide a reference for the layout and design of ship cabins.
2022,44(18): 51-56 收稿日期:2021-08-06
DOI:10.3404/j.issn.1672-7649.2022.18.011
分类号:U662
基金项目:军队维修类项目 (NA-J2018-02)
作者简介:崔奥(1993-),男,硕士,助理工程师,研究方向为船舶与海洋结构物设计与制造
参考文献:
[1] 徐义春. 卫星舱布局问题的智能求解方法研究[D]. 武汉: 华中科技大学, 2008.
[2] 宋婷婷. 二维一刀切装箱问题研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.
[3] 姜文英, 林焰, 陈明, 等. 基于粒子群和蚁群算法的船舶机舱规划方法[J]. 上海交通大学学报, 2014, 48(4): 502–507
JIANG Wen-ying, LIN Yan, CHEN Ming, et al. Ship cabin planning method based on particle group and ant colony algorithm[J]. Journal of Shanghai Jiaotong University, 2014, 48(4): 502–507
[4] 周发模. 粒子群算法及其在机舱布置优化的应用研究[D]. 武汉: 武汉理工大学, 2009.
[5] LUO X, YANG Y, GE Z, et al. Maintainability-based facility layout optimum design of ship cabin[J]. International Journal of Production Research, 2014, 53(3): 677–694
[6] 赵士光. 消防船机舱优化布置的可视化研究[D]. 大连: 大连理工大学, 2014.
[7] SUN J, XU W, FENG B. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level[C] // IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2006: 3049-3054.
[8] 赵红超, 周洪庆, 王书湖. 无人机三维航迹规划的量子粒子群优化算法[J]. 航天控制, 2021, 39(1): 40–45
ZHAO Hong-chao, ZHOU Hong-qing, Wang Shu-hu. Quantum particle swarm optimization algorithm for UAV 3D track planning[J]. Aerospace Control, 2021, 39(1): 40–45
[9] 徐方维, 谭洋洋, 杨洪耕, 等. 兼顾不同角色利益的集中型充电站优化布局[J]. 高电压技术, 2017, 43(4): 1256–1262
XU Fang-wei, TAN Yang-yang, YANG Hong-geng, et al. Optimal layout of centralized charging stations taking into account the interests of different roles[J]. High Voltage Technology, 2017, 43(4): 1256–1262
[10] 黄建江, 须文波, 孙俊, 等. 量子行为粒子群优化算法的布局问题研究[J]. 计算机应用, 2006(12): 3015–3018
Huang Jian-jiang, XU Wen-bo, Sun Jun, et al. Research on layout problem of quantum behavior particle swarm optimization algorithm[J]. Computer Applications, 2006(12): 3015–3018
[11] 罗云, 唐丽晴. 粒子群蚁群混合优化算法在船舶机舱布局优化上的应用[J]. 舰船电子工程, 2019, 39(10): 156–161
Luo Yun, Tang Li-qing. Application of particle swarm optimization and ant colony optimization algorithm in ship engine room layout optimization[J]. Ship Electronic Engineering, 2019, 39(10): 156–161
[12] 窦小敏, 秦宁宁. 电力系统经济调度的量子粒子群改进算法[J]. 重庆邮电大学学报(自然科学版), 2020, 32(4): 528–535
DOU Xiao-min, QIN Ning-ning. Improved quantum particle swarm optimization algorithm for economic dispatching of power system[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(4): 528–535
[13] 方伟, 孙俊, 谢振平, 等. 量子粒子群优化算法的收敛性分析及控制参数研究[J]. 物理学报, 2010, 59(6): 3686–3694
FANG Wei, SUN Jun, XIE Zhen-ping, et al. Convergence analysis and control parameters of quantum particle swarm optimization algorithm[J]. Journal of Physics, 2010, 59(6): 3686–3694
[14] 张钧, 贺可太. 求解三维装箱问题的混合遗传模拟退火算法[J]. 计算机工程与应用, 2019, 55(14): 32–39
ZHANG Jun, HE Ke-tai. Hybrid genetic simulated annealing algorithm for solving three-dimensional packing problem[J]. Computer Engineering and Application, 2019, 55(14): 32–39