为了探究非正弦运动对串列水翼推进性能的影响,本文采用计算流体力学方法和重叠网格技术,建立二维串列水翼纯升沉运动下的水动力数值模型。通过不同时间步长和网格尺寸的数值结果比较,验证了数值模型的收敛性。通过与公开发表的试验和数值结果的比较,验证了数值模型的计算精度。引入非正弦系数S,研究非正弦运动对串列升沉水翼推进性能的影响。结果表明:当非正弦系数从S=1增大或减小时,串列水翼水动力的瞬时峰值增大;除个别少数相位差下的运动状态,在非正弦运动下,前翼和后翼的平均推力系数增大;与正弦运动相比,减小非正弦系数可以增大前翼和后翼的推进效率。
In order to explore the influence of non-sinusoidal motion on the propulsion performance of in-line tandem hydrofoil, this paper adopts computational fluid dynamics method and overlapping grid technology to establish a two-dimensional hydrodynamic numerical model under pure plunge motion of in-line tandem hydrofoil. The comparison of the numerical results of different time steps and grid sizes verifies the convergence of the numerical model. The calculation accuracy of the numerical model is verified by comparison with published experiments and numerical results. Furthermore, the non-sinusoidal coefficient S is introduced to study the influence of non-sinusoidal motion on the propulsion performance of the in-line tandem plunge hydrofoil. The results show that when the non-sinusoidal coefficient increases or decreases from S=1, the instantaneous peak value of the hydrodynamic force of the tandem hydrofoil increases. Except for the state of motion under individual phase differences, the average thrust coefficient of the front and rear wings increases under non-sinusoidal motion. Compared with sinusoidal motion, reducing the non-sinusoidal coefficient can increase the propulsion of the front and rear wings effectiveness.
2022,44(18): 94-100 收稿日期:2021-10-14
DOI:10.3404/j.issn.1672-7649.2022.18.019
分类号:U664.36
基金项目:上海交通大学海洋工程国家重点实验室研究基金(1904);辽宁省自然科学基金面上项目(2020-MS-125)
作者简介:李光钊(1995-),男,硕士研究生,主要从事船舶与海洋工程水动力研究
参考文献:
[1] 于宪钊, 苏玉民. 基于滑移网格技术的串列翼推进性能分析[J]. 上海交通大学学报, 2012, 46(08): 1306–1342
[2] JONES K, CASTRO B, MAHMOUD O, et al. A collaborative numerical and experimental investigation of flapping-wing propulsion [C]// 40th AIAA Aerospace Sciences Meeting & Exhibi. American Institute of Aeronautics and Astronautics, 2002.
[3] BROERING T, LIAN Y, HENSHAW W. Numerical study of two flapping airfoils in tandem configuration [C]// 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 2010: 865.
[4] 石成明, 聂小芳, 周袭明. 串列翼对扑翼飞行器推进性能影响的风洞实验研究[C]// 中国力学大会-2017暨庆祝中国力学学会成立60周年大会, 2017.
[5] 李永泽, 孙传杰, 卢永刚. 串列翼布局前后翼相对位置对气动特性影响研究[J]. 飞机设计, 2016, 36(6): 32–36
[6] 许国冬, 徐文华. 串列翼的涡运动与水动力干扰研究[C]// 第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集, 201708, 282−290.
[7] BOUDIS A, BAYEUL-LAINÉ A-C, BENZAOUI A, et al. Numerical investigation of the effects of nonsinusoidal motion trajectory on the propulsion mechanisms of a flapping airfoil[J]. Journal of Fluids Engineering-Transactions of the Asme, 2019, 141(4)
[8] CHAO L-M, PAN G, ZHANG D, et al. Numerical investigations on the force generation and wake structures of a nonsinusoidal pitching foil[J]. Journal of Fluids and Structures, 2019, 85: 27–39
[9] HEATHCOTE S, WANG Z, GURSUL I. Effect of spanwise flexibility on flapping wing propulsion[J]. Journal of Fluids and Structures, 2008, 24(2): 183–199
[10] WANG Y.L., JIANG W., XIE Y.H. Numerical investigation into the effects of motion parameters on energy extraction of the parallel foils[J]. Journal of Fluids Engineering-Transactions of the Asme, 2019, 141(6)
[11] YOUNY J, LAI J C S. Oscillation frequency and amplitude effects on the wake of a plunging airfoil[J]. Aiaa Journal, 2004, 42(10): 2042–2052
[12] KINSEY T, DUMAS G. Optimal tandem configuration for oscillating-foils hydrokinetic turbine[J]. Journal of Fluids Engineering-Transactions of the Asme, 2012, 134(3): 280–292