研究浮式风力机系统整体湿拖的运动及拖缆张力,建立浮式风力机系统的水动力模型,基于三维势流理论计算浮式基础的水动力。考虑风、浪、流环境载荷,计算拖航过程浮式基础运动、风机法兰倾角、机舱加速度、拖缆张力等关键参数,分析缆长、有义波高、谱峰周期等参数对计算结果的影响。结果表明,在给定的环境参数范围内,浮式风机运动符合限制条件;拖缆越短相同环境参数下拖缆张力越大,600 m 及以上缆长的拖缆张力相对稳定,受波浪参数影响较小。最后给出不同缆长作业的波浪参数限制条件,为浮式风机整体湿拖作业提供参考。
The motion and cable tension of wet towing of the floating wind turbine systems were studied. The hydrodynamic model of floating wind turbine system was established, and the hydrodynamic forces of floating foundation were calculated based on three-dimensional potential flow theory. Having considered wind, wave and current loads, the key parameters such as floating foundation motion, wind- turbine flange inclination, cabin acceleration and towing cable tension during towing were calculated. The influence of cable length, wave height and wave period on the calculation results was analyzed. The results show that within a given ranges of environmental parameters, the motion of the floating turbine meets restrictive conditions. The shorter the towed cable, the greater the towed cable tension under the same environmental parameters. The towed cable tension of 600 m and above is relatively stable and less affected by wave parameters. Finally, the limiting operating wave parameters of different cable lengths are presented. This study provides some suggestions for the wet-towing operation of the floating wind turbine.
2022,44(18): 116-121 收稿日期:2021-12-07
DOI:10.3404/j.issn.1672-7649.2022.18.023
分类号:U675.5
基金项目:高技术船舶科研资助项目
作者简介:李亚杰(1992-),女,硕士,研究方向为海上风电工程
参考文献:
[1] 袁剑平, 毛鸿飞, 潘新祥, 等. 海上浮式风机研究现状展望—基于南海海域[J]. 广东海洋大学学报, 2020, 40(5): 133–138
YUAN J P, MAO H F, PAN X X, et al. Prospect of research status of offshore floating wind turbines - based on the South China Sea[J]. Journal of Guangdong Ocean University, 2020, 40(5): 133–138
[2] 陈嘉豪, 裴爱国, 马兆荣, 等. 海上漂浮式风机关键技术研究进展[J]. 南方能源建设, 2020, 7(1): 8–20
CHEN J H, PEI A G, MA Z R, et al. Research progress on key technologies of offshore floating wind turbines[J]. Southern Energy Construction, 2020, 7(1): 8–20
[3] 万德成, 程萍, 黄扬, 等. 海上浮式风机气动力-水动力耦合分析研究进展[J]. 力学季刊, 2017, 38(3): 385–407
WAN D C, CHENG P, HUANG Y, et al. Research progress on aerodynamic-hydrodynamic coupling analysis of offshore floating wind turbines[J]. Mechanical Quarterly, 2017, 38(3): 385–407
[4] 徐应瑜, 胡志强, 刘格梁. 10 MW 级海上浮式风机运动特性研究[J]. 海洋工程, 2017, 35(3): 44–51
XU Y Y, HU Z Q, LIU G L. Research on motion characteristics of 10 MW offshore floating wind turbine[J]. Ocean Engineering, 2017, 35(3): 44–51
[5] 卢益峰, 黄超. 浮式风机TLP平台运输方法[J]. 船舶工程, 2020, 42(8): 7–10+38
LU Y f, HUANG C. Transport method of floating fan TLP platform[J]. Marine Engineering, 2020, 42(8): 7–10+38
[6] CZESLAW D, PAWEL D, JEDRZEJ Ż. Technology concept of TLP platform towing and installation in waters with depth of 60 m[J]. Polish Maritime Research, 2017, 24(S1): 59–66
[7] SHOICHI H, KENJI Y, KUNIHIRO H, et al. At-sea towing of a mega-float unit[J]. Journal of Marine Science and Technology, 2004, 8(3): 138–146
[8] ZHOU D. Methods of towing, berthing & departing large offshore drilling platforms.[J]. Journal of Navigation of China, 2013, 36(3): 147–150
[9] 王红芳. 大尺度结构船舶波浪线性载荷数值计算[J]. 舰船科学技术, 2018, 40(18): 1–3
WANG H F. Numerical calculation of wave linear loads on large scale ships[J]. Ship Science and Technology, 2018, 40(18): 1–3
[10] Liu L Q, Guo Y, ZHAO H X, et al. Motions of a 5 MW floating VAWT evaluated by numerical simulations and model tests[J]. Ocean Engineering., 2017, 144: 21–34
[11] 杨光, 李洁, 刘旭平, 等. 基于MOSES的张力腿平台干拖运输过程稳性分析[J]. 石油和化工设备, 2019, 22(6): 15–18
YANG G, LI J, LIU X P, et al. Stability analysis of dry haul transport process of tension leg platform based on MOSES[J]. Petroleum and Chemical Equipment, 2019, 22(6): 15–18