大型船舶过弯时,若首摇方向与期望航向相反,由于首摇惯性会使船舶失控。对此,提出一种欠驱动船舶的首摇抑制策略,首先建立船舶水平面三自由度模型,利用视线制导将欠驱动船舶的路径跟踪问题转化为航向控制问题,通过在PID控制中添加首摇抑制项,设计基于视线制导和PID控制的首摇抑制器。仿真结果表明,提出的策略同时适用于直线和曲线航段,能有效减小过弯时船舶的最大垂向误差(49.8%)、平均垂向误差(56.2%)、最大航向角误差(43.6%)和平均航向角误差(42.9%),提高路径跟踪精度,可降低首摇角速度和舵角的变化幅度,具有一定的应用价值。
When a large ship is cornering, if the direction of yaw is opposite to that of the desired course, the ship will be out of control due to the inertia of yaw. Aiming at this problem,this paper proposes a yaw suppression strategy. Firstly, a 3-DOF horizontal plane model of the underactuated ship is established. Then, the line of sight (LOS) method is used to transform the path tracking problem into the course control problem of the underactuated ship. By adding a yaw suppression item into PID control, a yaw suppression controller based on line of sight guidance and PID control is designed. The simulation results show that the proposed strategy is suitable for both straight and curved segments, and can effectively reduce the maximum vertical error(49.8%), average vertical error(56.2%), maximum course angle error(43.6%), average course angle error(42.9%) of the ship during cornering and improve the path tracking accuracy, it can also reduce the change in angular velocity of yaw and rudder angle, which has certain application value.
2022,44(20): 54-59 收稿日期:2022-07-29
DOI:10.3404/j.issn.1672-7649.2022.20.011
分类号:U675.7
基金项目:国家自然科学基金资助项目(51179103)
作者简介:郭佳宝(1998-),男,硕士研究生,研究方向为欠驱动船舶导航策略
参考文献:
[1] 郭晨, 汪洋, 孙富春, 等. 欠驱动水面船舶运动控制研究综述[J]. 控制与决策, 2009, 24(3): 321–329
[2] 余亚磊, 苏荣彬, 冯旭, 等. 基于速变 LOS 的无人船反步自适应路径跟踪控制[J]. 中国舰船研究, 2019, 14(3): 163–171
[3] DAI L, CAO Q, XIA Y, et al. Distributed MPC for formation of multi-agent systems with collision avoidance and obstacle avoidance[J]. Journal of the Franklin Institute, 2017, 354(4): 2068–2085
[4] 卜仁祥, 刘正江, 胡江强. 欠驱动船舶非线性滑模靠泊控制器[J]. 交通运输工程学报, 2007, 7(4): 24–29
[5] ALMEIDA J, SILVESTRE C, PASCOAL A. Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty[J]. International Journal of Robust and Nonlinear Control, 2010, 20(14): 1549–1565
[6] SHOJAEI K. Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators[J]. Neurocomputing, 2016, 194: 372–384
[7] ZOU T, SHEN Z, DAI C. Adaptive iterative sliding mode berthing control for underactuated ship based on chaotic particle swarm[C]//2018 37th Chinese Control Conference (CCC). IEEE, 2018: 2881-2886
[8] FOSSEN T I, PETTERSEN K Y, GALEAZZI R. Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces[J]. IEEE Transactions on Control Systems Technology, 2014, 23(2): 820–827
[9] 贺宏伟, 邹早建, 曾智华. 欠驱动水面船舶的自适应神经网络-滑模路径跟随控制[J]. 上海交通大学学报, 2020, 54(9): 890
[10] 秦梓荷, 林壮, 李平, 等. 基于 LOS 导航的欠驱动船舶滑模控制[J]. 中南大学学报:自然科学版, 2016, 47(10): 3605–3611
[11] 祝亢, 黄珍, 王绪明. 基于深度强化学习的智能船舶航迹跟踪控制[J]. 中国舰船研究, 2021, 16(1): 43–113
[12] FOSSEN T I, LEKKAS A M. Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents[J]. International Journal of Adaptive Control & Signal Processing, 2017, 31(4): 445–463
[13] BORHAUG E, PAVLOV A, PETTERSEN K Y, et al. Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents[C]//Conference on Decision and Control, 2008: 4984-4991.
[14] PIAO Z, GUO C, SUN S, et al. Research into the automatic berthing of underactuated unmanned ships under wind loads based on experiment and numerical analysis[J]. Journal of Marine Science and Engineering, 2019, 7(9): 1–22
[15] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. John Wiley and Sons, 2011.