基于SUBOFF水下航行体模型,对不同航速下光滑表面及粗糙表面水下航行体开展数值分析。首先基于试验标模进行直航阻力数值模拟及网格收敛验证,并与试验值比较验证数值计算结果的准确性及有效性。随后,通过验证后有效的计算模型对光滑表面及粗糙表面航行体水动力特性进行数值分析,结果表明水下航行体直航时,相较于光滑表面航行体,粗糙表面航行体阻力有所增加。光滑表面航行体的总阻力比高度2 mm的粗糙表面航行体的总阻力小8%~10%,比高度1 mm的粗糙表面航行体的总阻力小7%~10%。在同样阻力情况下,高度2 mm粗糙表面航行体航速为20 kn时,光滑航行体航速可达到21.6 kn。
Based on the SUBOFF underwater vehicle model, numerical analysis is carried out on smooth surface and rough surface at different speeds. First, numerical simulation of the test of the SUBOFF model at different speeds is carried out by given different incoming flow speeds, and the grid independence verification is validated. The numerical results are compared with the experimental data of the Taylor tank to verify the accuracy of the numerical experiments. Subsequently, numerical experiments were carried out on the hydrodynamic characteristics of smooth and rough surface vehicles through valid numerical method. The results show that compared with the smooth surface vehicle, the resistance of the rough surface vehicle is increased. The total resistance of a smooth surface vehicle is 8%~10% lower than that of a rough surface vehicle with a height of 2 mm, and 7%~10% less than that of a rough surface vehicle with a height of 1 mm. Under the same resistance, when the speed of a rough surface with a height of 2 mm is 20 kn, the speed of a smooth body can reach 21.6 kn.
2022,44(23): 1-5 收稿日期:2022-09-18
DOI:10.3404/j.issn.1672-7649.2022.23.001
分类号:U661.3;TJ67
作者简介:董鹏(1979-),男,高级工程师,研究方向为舰船工程
参考文献:
[1] 王玉婷, 向先波, 王瑟. 基于CFD和直接计算技术的航行器阻力系数算法研究[J]. 中国科技论文, 2016, 11(19):2164-2168
[2] 王庆旭. 三体滑行艇阻力和稳定性研究[D]. 哈尔滨:哈尔滨工程大学, 2012.
[3] FLORIAN R. Menter. Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows. NASA Technical Memorandum 103975. 1992.
[4] 许锦宇. 作业型AUV总体设计与水动力性能分析[D]. 哈尔滨:哈尔滨工程大学, 2017.
[5] SAVITSKY D. Hydrodynamic design of planing hulls[J]. Marine Technology, 1964, 1(1):71-95
[6] GHASSEMI H, KOHANSAL AR. Higher order boundary element method applied to the hydrofoil beneath the free surface[C]//Proceedings of the 28th International Conference on Ocean, Offshore and Engineering. Honolulu, Hawaii USA:[s. N.], 2009.
[7] 苏玉民, 陈庆童, 沈海龙, 等. 基于 CFD 技术和 2.5D 理论的滑行艇水动升力计算[C]第十五届中国海洋(岸)工程学术讨论会论文集. 214-218.
[8] 陈庆童. 滑行艇在高速航行时横向水动力的数值计算[D]. 哈尔滨:哈尔滨工程大学, 2012.
[9] 李永坤. 全系统水下航行体流固耦合计算及水动力噪声计算[D]. 大连:大连理工大学, 2020.