为了提高复杂人机系统在全生命周期的设计与开发效率并降低总体成本,人因分析必须应用于整个设计过程,然而目前仍然缺乏支撑复杂人机系统的人因设计的通用分析模型。本文针对系统人因工程的概念,结合人-系统整合思想制定人因分析的概念框架,提出整合阶段、子系统与人员复杂人机系统的人因分析模型。针对船舶系统设计进行应用性人因分析,为船舶系统全生命周期的人因指标选取、人因方法实施活动的开展奠定理论基础。
In order to improve the design and development efficiency of complex human-machine systems in the whole life cycle and reduce the overall cost, human factors assessment must start from the stage of conceptual design to the whole design process. Therefore, it is necessary to establish a human factors analysis model for complex human-machine systems to improve the efficiency and effectiveness of human factors assessment. However, there is still a lack of common analysis models to support the human factors design of systems. This study establish the conceptual framework of human factors analysis in relation to the concept of system human factors engineering and the concept of human-system integration process. Based on this, a human factor analysis model of complex human-machine system with three system dimensions of stage, subsystem and staff is proposed. Finally, the paper provides an applied analysis for ship system design, which provides a systematic analysis basis for human factors design of ship systems. This lays the theoretical foundation for the selection of human factors indicators and the implementation activities of human factors methods for the whole life cycle of ship systems.
2023,45(11): 1-8 收稿日期:2022-09-14
DOI:10.3404/j.issn.1672-7619.2023.11.001
分类号:U662
作者简介:余阳(1989-),男,博士,高级工程师,研究方向为船舶人因工程
参考文献:
[1] NAIKAR N, SANDERSON P M. Evaluating design proposals for complex systems with work domain analysis[J]. Human Factors:The Journal of the Human Factors and Ergonomics Society, 2001, 43(4): 529–542
[2] BRATHEN, NORDO, VEUM. An integrated framework for task analysis and systems engineering approach, example and experience. pdf[J]. INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES, 1994, 41(4): 509–526
[3] 刘双, 陈霞. 海军装备领域人因工程研究现状及发展[J]. 舰船科学技术, 2017, 39(7): 8–13
LIU Shuang, CHEN Xia. Present status and trend of naval equipment human factors engineering[J]. Ship Science and Technology, 2017, 39(7): 8–13
[4] NEERINCX M A, GRIFFIOEN E. Cognitive task analysis: harmonizing tasks to human capacities[J]. Ergonomics, 1996, 39(4): 543–561
[5] GENAIDY A, SALEM S, KARWOWSKI W, et al. The work compatibility improvement framework: an integrated perspective of the human-at-work system[J]. Ergonomics, 2007, 50(1): 3–25
[6] WILSON J R. Fundamentals of systems ergonomics/human factors[J]. Applied Ergonomics, 2014, 45(1): 5–13
[7] SIEMIENIUCH C E, SINCLAIR M A. Systems integration[J]. Applied Ergonomics, 2006, 37(1): 91–110
[8] WATERSON P. A systems ergonomics analysis of the Maidstone and Tunbridge Wells infection outbreaks[J]. Ergonomics, 2009, 52(10): 1196–1205
[9] BUCKLE P, CLARKSON P J, COLEMAN R, et al. Systems mapping workshops and their role in understanding medication errors in healthcare[J]. Applied Ergonomics, 2010, 41(5): 645–656
[10] VILLAGE J, SEARCY C, SALUSTRI F, et al. Design for human factors (DfHF): a grounded theory for integrating human factors into production design processes[J]. Ergonomics, 2015, 58(9): 1529–1546
[11] SAGOT J C, GOUIN V, GOMES S. Ergonomics in product design: safety factor[J]. Safety science, 2003, 41(2–3): 137–154
[12] DEERE S J, GALEA E R, LAWRENCE P J. A systematic methodology to assess the impact of human factors in ship design[J]. Applied Mathematical Modelling, 2009, 33(2): 867–883
[13] 庞兵, 于雯宇. 基于改进的HFACS和模糊理论的航空事故人因分析[J]. 安全与环境学报, 2018(18): 1886–1890
[14] 高杉, 刘鹏. 2018年Uber自动驾驶汽车交通事故分析: 基于人因分析与分类系统视角[J]. 人类工效学. 2022 (28): 30-36.
[15] HAMILTON W I, KAZEM M L N, HE X, et al. Practical human factors integration in the nuclear industry[J]. Cognition, Technology & Work, 2013, 15(1): 5–12
[16] BURGESS-LIMERICK R. Human-systems integration for the safe implementation of automation[J]. Mining, Metallurgy & Exploration, 2020(37): 1799–1806
[17] DANTAN J Y, EL MOUAYNI I, SADEGHI L, et al. Human factors integration in manufacturing systems design using function–behavior–structure framework and behaviour simulations[J]. CIRP Annals, 2019, 68(1): 125–128
[18] MALONE T B, CARSON F. HSI Top Down Requirements Analysis[J]. Naval Engineers Journal, 2003, 115(2): 37–48
[19] KARWOWSKI W, AHRAM T Z. Interactive management of human factors knowledge for human systems integration using systems modeling language[J]. Information Systems Management, 2009, 26(3): 262–274
[20] 刘坚, 武春燕, 于德介, 等. 考虑人因可靠性的RCM方法改进研究[J]. 人类工效学. 2011(17): 37-41.
[21] 刘清, 万志远, 杨柳, 等. 基于EEG的船舶驾驶员工作负荷识别研究[J]. 武汉理工大学学报(交通科学与工程版): 1-13.
[22] SALMON P M, STANTON N A, WALKER G H, et al. Measuring situation awareness in complex systems: comparison of measures study[J]. International Journal of Industrial Ergonomics, 2009, 39(3): 490–500
[23] KARWOWSKI W, AHRAM T Z. Interactive management of human factors knowledge for human systems integration using systems modeling language[J]. Information Systems Management, 2009, 26(3): 262–274
[24] SIEMIENIUCH C E, SINCLAIR M A. Systems integration[J]. Applied Ergonomics, 2006, 37(1): 91–110
[25] 何再明, 陈登凯, 王雨倩, 等. 载人潜器驾驶舱人机工效评估方法研究[J]. 舰船科学技术, 2016, 38(7): 105–109+135
HE Zai-ming, CHEN Deng-kai, WANG Yu-qian, et al. Research on the method of ergonomics evaluation in manned submersibles cockpit[J]. Ship Science and Technology, 2016, 38(7): 105–109+135
[26] FINNVEDEN G, HAUSCHILD M Z, EKVALL T, et al. Recent developments in life cycle assessment[J]. Journal of Environmental Management, 2009, 91(1): 1–21
[27] JENAB K, SARFARAZ A, AMELI M T. A conceptual design selection model considering conflict resolution[J]. Journal of Engineering Design, 2013, 24(4): 293–304
[28] BATTINI D. Preventing ergonomic risks with integrated planning on assembly line balancing and parts feeding[J]. International Journal OF Production Research, 2017, 55(24): 7452–7472
[29] SAKTHI NAGARAJ T, JEYAPAUL R, VIMAL K E K, 等. Integration of human factors and ergonomics into lean implementation: ergonomic-value stream map approach in the textile industry[J]. Production Planning & Control, 2019, 30(15): 1265–1282
[30] 渠继东, 张亦驰, 孙功武, 等. 基于人因的深海载人潜水器航控界面的优化设计[J]. 舰船科学技术, 2022, 44(1): 154–158
QU Ji-dong, ZHANG Yi-chi, SUN Gong-wu, et al. Optimal design of navigation control interface for deep-sea manned submersible based on human factors[J]. Ship Science and Technology, 2022, 44(1): 154–158